Reviewer’s report

Title: An In-vitro evaluation of the flow haemodynamic performance of Gore-Tex extracardiac conduits for univentricular circulation

Version: 0 Date: 07 May 2020

Reviewer: Yasemin Karaca-Altintas

Reviewer's report:

This is a very interesting article, well-written and with detailed explanations even for readers unused to this specific field.

The aim of this article was to model a pediatric scenario of TCPC, trying to stick to the reality more than a usual rigid circuit, and understand energy dynamics. The main quality of this article comes from the information brought by the use of compliant models versus the rigid ones, traditionally used by researchers evaluating hemodynamic performances of circuits, but actually poorly reflecting true flows, with lower levels of turbulence. The authors show that the use of a rigid model of TCPC underestimates energy losses by 21 to 30%, and show with Doppler visualisation that the nature of the flows are really different between rigid and compliant models. The second advantage is the use, in a compliant model, of a Gore-tex conduit, which is nowadays highly used by surgeons for TCPC connections, mimicking a "true" TCPC patient flow hemodynamics. They show that the use of a Gore-tex conduit lowers energy losses. Their models have high qualities because they include a fluid with density similar to blood, and also used a circuit that includes the variations linked to flow pulsatility.

My major remark adresses the choice of the models and to correctly understand the choices of the authors, I have to ask the following questions :

1. If the goal was to offer a current TCPC model for future geometry and graft studies, the model should look like a true TCPC patient nowadays, who has, most of the time, an extra-atrial connection. The width of the gore-tex conduit used in the model seems too large compared to a real connection between IVC and PAs. We can think that this large conduit does not give the same flow hemodynamics than a TCPC patient with a classic extracardiac conduit. Can the authors compare their connection with their conduit in the model to a classic extracardiac connection, with, I think, a conduit with a width close to the width of IVC?

2. Can the authors explain why do they chose this patient for the modeling? Do this patient has Fontan-related complications?

Minors questions are the following :

Concerning the model:
3. I don't understand why authors modeled the LIV without giving a flow within this part of the circuit. They say that no flow rate was described in the literature for LIV but wasn't it possible to give a classic "venous" flow of an intermediate size?
4. The authors give the numbers for the wall compliance of the compliant models. Was it possible to measure also the compliance of the rigid model?

Concerning the flow analysis:
5. With ultrasound analysis, The authors show that compliant models have more turbulence and mixing, with the gore-tex model performing better due to less mixing in the IVC and RPA. Can the authors explain why less mixing occur specifically in these vessels, specially RPA? Was it the same in the 60:40 scenario versus 50:50 pulmonary split?

6. The authors explain that pulmonary flow split variations induce an increase in energy loss when passing from 60:40 to 50:50. In this model, they use a patient with PA size in the normal range. But as they explain, some patients who need TCPC have small PAs. Was it possible to find the best pulmonary split inducing the least energy loss for this patient included in the model?

Finally minor remarks concerning syntax and spelling:
line 154. after "Markl et al." should come the number of the reference
line 162. the flow rates were split and not where split

Very good and interesting article, but the model should be more practical and close to the "real" patient.

Level of interest
Please indicate how interesting you found the manuscript:

An article whose findings are important to those with closely related research interests

Quality of written English
Please indicate the quality of language in the manuscript:

Acceptable

Declaration of competing interests
Please complete a declaration of competing interests, considering the following questions:

1. Have you in the past five years received reimbursements, fees, funding, or salary from an organisation that may in any way gain or lose financially from the publication of this manuscript, either now or in the future?

2. Do you hold any stocks or shares in an organisation that may in any way gain or lose financially from the publication of this manuscript, either now or in the future?
3. Do you hold or are you currently applying for any patents relating to the content of the manuscript?

4. Have you received reimbursements, fees, funding, or salary from an organization that holds or has applied for patents relating to the content of the manuscript?

5. Do you have any other financial competing interests?

6. Do you have any non-financial competing interests in relation to this paper?

If you can answer no to all of the above, write 'I declare that I have no competing interests' below. If your reply is yes to any, please give details below.

I declare that I have no competing interests

I agree to the open peer review policy of the journal. I understand that my name will be included on my report to the authors and, if the manuscript is accepted for publication, my named report including any attachments I upload will be posted on the website along with the authors' responses. I agree for my report to be made available under an Open Access Creative Commons CC-BY license (http://creativecommons.org/licenses/by/4.0/). I understand that any comments which I do not wish to be included in my named report can be included as confidential comments to the editors, which will not be published.

I agree to the open peer review policy of the journal