Reviewer’s report

Title: Estimating the burden of dengue and the impact of release of wMel Wolbachia infected mosquitoes in Indonesia: a modelling study

Version: 1 Date: 27 Jun 2019

Reviewer: Giorgio Guzzetta

Reviewer's report:

The authors have addressed in detail a large number of my initial comments and I commend them for their effort. I have no further comments on total estimates and mapping of infection burden.

However, I still have some important concerns on the model used for estimating Wolbachia effectiveness, and on the consistency and clarity of corresponding results. These concerns are especially relevant because the Wolbachia effectiveness estimation is the most important and innovative result of this study and can be used to support decisions related to control policies.

1) My main concern refers to the newly added lines 288-291, where the authors provide details on the way they fitted the transmission rates. The available incidence data against which the model is calibrated do not represent a setting at epidemiological equilibrium because only 27 years have passed since the first notification of "continual urban nationwide transmission of dengue in Indonesia" (1988) and the year of incidence data (2015). Therefore, if I understand correctly, the authors decided to calibrate the equilibrium incidence of the model to available incidence data after adjusting the human life expectancy to 27 years. The obtained estimates for the disease transmissibility are then used to project the long-term effectiveness of the intervention via estimates of the reduction in dengue uptake by Wolbachia-infected mosquitoes.
I understand the problems related to fitting data from non-equilibrium, and I agree that reducing the life expectancy goes in the right direction by reducing the transiently high fraction of susceptibles due to the relatively recent spread of dengue in Indonesia, and by forcing the model to reach equilibrium much more quickly. However, it is very difficult for me to assess the appropriateness of this choice. The age-structured model adopted by the authors is heavily sensitive to age via the lifetime history of infections of individuals, therefore using an unrealistic age distribution (due to the artificially short life expectancy) can have a dramatic impact on the overall qualitative model dynamics. I am therefore not at all convinced that the resulting disease transmissibility estimates are somewhat close to the real underlying transmissibility (and therefore that the provided effectiveness estimates have any predictive value). I think that the authors should either provide a mathematical proof (or literature reference) demonstrating the appropriateness of this critical choice, or some validation that the estimated transmission rates plausibly represent actual dengue dynamics in Indonesia under a realistic profile for the age distribution. For example, how do the model-estimated profiles of seroprevalence by age compare to observed ones, under the assumption of a realistic age distribution and using the estimated transmission rates? What are the incidence rates after 27 years since initialization? Maybe the authors can come up with more meaningful quantities for assessing the validity of their choice, which I find highly controversial.

2) I now understand the rationale for the definition of the force of infection in the model (end of page 6, Supplementary Material), but I am confused by the author's declaration (in the response and Supplementary text) that "the force of infection of the first stage is approximately 0.75 of the value of the second stage"; as far as I understand, it should actually be the opposite given that the first stage is susceptible to 4 groups while the second stage to only 3. Furthermore, in the equations there is still an undefined quantity $S(a)$, which I think should be substituted by the stage-specific fraction of susceptibles, i.e. $S_1(a)$ for lambda_1, $S_2(a)$ for lambda_2 and so on. Because of the role of the force of infection in the model formulation, it is key that the authors clarify this point, justifying their responses, in order to assess the correctness of the methods.
3) Reported results for the Wolbachia effectiveness are very confusing. Comparing Table 3 to Table 1, the Wolbachia intervention seems to reduce Self-managed, Outpatient, Hospitalized and Total cases by about ~74% (close to the overall effectiveness value given in the abstract); averted fatalities and DALYs losses amount to about 86% of the total estimated burden.

3.1) why is the reduction in the number of deaths not proportional to the decline in hospitalizations (which are related to severe dengue cases, I guess)?

3.2) why is the proportion of averted DALY losses the same as the proportion of averted deaths? Three quarters of DALYs lost, according to Table 1, are composed of Years Lost to Disabilities (due to hospitalized cases, I assume?);

3.3) Self-managed and outpatients cases appear switched between Table 3 and Table 1

Furthermore, the effectiveness value given in the abstract is lower than any predicted value depicted in Figures 5 and 6 (under the 100% coverage). My interpretation is that 73.8% refers to symptomatic cases while Figures 5 and 6 refers to a reduction in hospitalized incidence (as declared in lines 314-315), although this is not reflected in the numbers proposed in Table 3 and Table 1, as pointed out.

3.4) is 100% coverage the baseline scenario? In such case, this should be made more explicit and, to avoid further confusion, the 50% coverage scenario in Fig. 5 might be moved to the Supplementary Material.

3.5) (if my interpretation is correct) it is confusing that Figures 5 and 6 provide a different definition of effectiveness compared to results given in the abstract and in other parts of the paper.
Minor issue:

- Supplementary material, p. 7-8: in model equations, $\mu(a)$ should be made explicit and not included in the $\phi(a)$ component. For example, the equations for the demographic processes for a generic age group a should be written as

$$\frac{dP(a)}{dt} = \phi(a-1) P(a-1) - (\mu(a) + \phi(a)) P(a)$$

where $\phi(x)$ represents the rate at which individuals of age x move to age $(x+1)$ and $\mu(x)$ is the mortality rate.

The distinction of the two processes (aging and mortality) is necessary because in the current formulation of model equations (though certainly not in model implementation), the same number of individuals coming out of age class x would flow into age class $x+1$, resulting in a conservation of individuals between age classes x and $x+1$, i.e. in a constant population distribution over age (contrary to what Figure S1 shows).

Typos:

- Line 186: I think the authors meant 2.5-97.5% Uncertainty Intervals?

- 357: UIs (0.22 - .9) do not include the mean (1.1); perhaps the authors meant 0.2-2.9?

- Table S4: 0.025% and 0.975% UI; again, I think the authors meant 2.5-97.5% UI.

- In Table S1.4, the Hopkins model is reported to assume a duration of infection of 100 days, lying completely out of the range of all other models; can you confirm that it is not a typo?
Are the methods appropriate and well described?
If not, please specify what is required in your comments to the authors.

No

Does the work include the necessary controls?
If not, please specify which controls are required in your comments to the authors.

No

Are the conclusions drawn adequately supported by the data shown?
If not, please explain in your comments to the authors.

No

Are you able to assess any statistics in the manuscript or would you recommend an additional statistical review?
If an additional statistical review is recommended, please specify what aspects require further assessment in your comments to the editors.

I am able to assess the statistics

Quality of written English
Please indicate the quality of language in the manuscript:

Acceptable

Declaration of competing interests
Please complete a declaration of competing interests, considering the following questions:

1. Have you in the past five years received reimbursements, fees, funding, or salary from an organisation that may in any way gain or lose financially from the publication of this manuscript, either now or in the future?

2. Do you hold any stocks or shares in an organisation that may in any way gain or lose financially from the publication of this manuscript, either now or in the future?

3. Do you hold or are you currently applying for any patents relating to the content of the manuscript?

4. Have you received reimbursements, fees, funding, or salary from an organization that holds or has applied for patents relating to the content of the manuscript?

5. Do you have any other financial competing interests?

6. Do you have any non-financial competing interests in relation to this paper?
If you can answer no to all of the above, write 'I declare that I have no competing interests' below. If your reply is yes to any, please give details below.

I declare that I have no competing interests

Statement on potential review bias

Please complete a statement on potential review bias, considering the following questions:

1. Did you co-author any publication with an author of this manuscript in the last 5 years?

2. Are you currently or recently affiliated at the same institution as an author of this manuscript?

If you can answer no to all of the above, write 'I declare that I did not publish with these authors in the last 5 years and also meet the affiliation criteria'. If your reply is yes to any, please give details below.

I declare that I did not publish with these authors in the last 5 years and also meet the affiliation criteria

I agree to the open peer review policy of the journal. I understand that my name will be included on my report to the authors and, if the manuscript is accepted for publication, my named report including any attachments I upload will be posted on the website along with the authors' responses. I agree for my report to be made available under an Open Access Creative Commons CC-BY license (http://creativecommons.org/licenses/by/4.0/). I understand that any comments which I do not wish to be included in my named report can be included as confidential comments to the editors, which will not be published.

I agree to the open peer review policy of the journal