Author’s response to reviews

Title: Use of artificial primary teeth for endodontic laboratory research: experiments related to canal length determination

Authors:

Anna Carolina Mello-Moura (acvmello@usp.br)
Carmela Bresolin (carmela_rb@usp.br)
Cacio Moura-Netto (caciomn@usp.br)
André Ito (andreito76@gmail.com)
Angela Araki (a_araki@uol.com.br)
José Carlos Imparato (jimparato@usp.br)
Fausto Mendes (fmmendes@usp.br)

Version: 2 Date: 26 Jul 2017

Author’s response to reviews:

Answers to Reviewers

BMC Oral Health

Manuscript ID: OHEA-D-17-00088R1

Title: Use of artificial primary teeth for endodontic laboratory research: experiments related to canal length determination

In order to facilitate the review process, your comments are summarized before the respective answers.

Editor Comments:

1. As a member of the editorial board (Section Editor) of this journal, in order to ensure transparency, please declare this in the Competing Interests section of the Declarations.

Response: Totally agreed. We added this information in Competing interests section (page 15).

--------
Reviewer reports:

Peter Bottenberg, PhD (Reviewer 1): My first review was mainly based on concerns about the independence of the author with respect to the manufacturer. This issue is now clarified.

There remain concerns about the content:

1) A short description in general terms of the manufacturing process (f.i. injection molding, 3D-printing…) of the teeth should be given. Also how the pulp chamber was filled with wax, was it through the foramen? As core before production?

Response: They are manufactured using elastomer molds that are filled with a synthetic resin, forming two halves of the tooth. Then, the artificial pulp canals are filled with wax to simulate the pulp content, and the parts are joined. We added this information in the text (page 4, 3rd paragraph).

2) In the discussion, radiographic working length assessment is put forward as the best method. However, according to the graphs it has the largest variability with the highest risk of overextension and furthermore, in children would contribute to the irradiation of sensible growing tissues. Moreover, placing the tooth on a film or sensor does not reproduce the clinical situation, so statements on this issue should be revised.

Response: Actually, we did not mention that the radiographic method is the best method. We asserted that apex locators performed better (last paragraph of page 10, and 1st paragraph of page 11). We only affirmed that the radiographic method is still suitable when the clinician does not have an electronic apex locator. In the revised version, we have added some sentences on these two observations that you made (Page 12, 1st paragraph).

3) The language use must really be improved. Even if scientific authors do not have the ambition to win the literature Nobel prize, the text should at least be intelligible to other non-native speakers (Asia, Eastern Europe, Africa…) all with their own way of using English as second language. Google Translate is not a good way of producing scientific work. Find some examples in the annotated version of the manuscript enclosed.

Response: I know that “Google Translate” is not a good way to produce scientific work. Original and innovative ideas and a consistent production in some research areas are the best way to do “Good Science”. I think I know this, because I I have more than 120 published papers in several journals, and several publications about caries detection methods and about dental caries in general. Therefore, I believe that I have had a long scientific career, and therefore, I know how to produce scientific work.
However, despite the fact that you had been rude in your comment, since there are many other ways to say that the paper needs an improvement in the language, we have had the paper edited by an English language editing service.