Reviewer’s report

Title: SIRT1 Activation Mediates Heat-Induced Survival of UVB Damaged Keratinocytes

Version: 0 Date: 21 Feb 2017

Reviewer: Heinrich Kovar

Reviewer's report:

In this study, Calapre et al. report on the combined effect of in vitro UVB and heat stress on keratinocytes and skin biopsies. They report modulation of a p53-driven apoptosis response due to heat induced activation of SIRT1 and consequent deacetylation of p53. In essence, this study recapitulates a previously published study of the same authors (Calapre et al., BMC Dermatol. 2016 May 26;16:6) with very little new information. The only new finding is that the SIRT1 inhibitor Ex-527 can phenotypically reverse the protective heat effect on keratinocytes. However, there is no novel mechanistic insight. In fact, the surprisingly small effect of Ex-527 on p53 acetylation (Fig 3A) and reactivation of p53 target genes (compared to untreated controls, Fig 2B) poses the question about the mechanism of apoptosis and proliferation rescue observed in Fig 3D. Also, it remains unclear, if heat can promote UVB induced cancerogenesis, as neither in vivo nor in vitro experiments addressing this question have been attempted. Thus, the novelty of findings in this study remains very modest.

Specific comments:

The authors’ conclusions about differential SIRT1 and p53 activation status in UVB treated and UVB plus heat treated cells are solely based on quantification of immunohistochemistry results. What was the method of signal quantification in immunohistochemistry? Testing protein status by immuno blotting (as partially done in Fig 3A) would allow for independent validation of these results that underlie the whole study.

Figure 1: The resolution of the supplied figure is poor. In addition, the many arrow heads in the figure make it difficult to appreciate immunohistochemistry signals. Also, the last panel (UVB+heat) stained for phosphorylated p53 and CPD shows a lot less CPD positive cells than the UVB only treated cells. Is this a representative picture?

Table 1: In the stainings for phosphorylated SIRT1, it appears that only SIRT1-p/CPD double positive cells were counted. How can the high percentage of double positive cells be explained in heat-only treated NHEK cells in absence of UVB? The percentage of SIRT1-p single positive cells should be separately listed.
Figure 3A: The increase in acetylated p53 in irradiated and heat treated cells treated with the SIRT1 inhibitor is not impressive. At least it is obviously far from UVB irradiated cells, even though quantification of ECL signals suggests otherwise. However, ECL signals are not linear when they come to saturation as shown for the UVB-treated reference.

Figure 3D: The effect of Ex-527 on untreated keratinocytes in terms of apoptosis is not shown.

Are the methods appropriate and well described?
If not, please specify what is required in your comments to the authors.

No

Does the work include the necessary controls?
If not, please specify which controls are required in your comments to the authors.

Yes

Are the conclusions drawn adequately supported by the data shown?
If not, please explain in your comments to the authors.

Yes

Are you able to assess any statistics in the manuscript or would you recommend an additional statistical review?
If an additional statistical review is recommended, please specify what aspects require further assessment in your comments to the editors.

I am able to assess the statistics

Quality of written English
Please indicate the quality of language in the manuscript:

Acceptable

Declaration of competing interests
Please complete a declaration of competing interests, considering the following questions:

1. Have you in the past five years received reimbursements, fees, funding, or salary from an organisation that may in any way gain or lose financially from the publication of this manuscript, either now or in the future?

2. Do you hold any stocks or shares in an organisation that may in any way gain or lose financially from the publication of this manuscript, either now or in the future?

3. Do you hold or are you currently applying for any patents relating to the content of the manuscript?
4. Have you received reimbursements, fees, funding, or salary from an organization that holds or has applied for patents relating to the content of the manuscript?

5. Do you have any other financial competing interests?

6. Do you have any non-financial competing interests in relation to this paper?

If you can answer no to all of the above, write 'I declare that I have no competing interests' below. If your reply is yes to any, please give details below.

I declare that I have no competing interests.

I agree to the open peer review policy of the journal. I understand that my name will be included on my report to the authors and, if the manuscript is accepted for publication, my named report including any attachments I upload will be posted on the website along with the authors' responses. I agree for my report to be made available under an Open Access Creative Commons CC-BY license (http://creativecommons.org/licenses/by/4.0/). I understand that any comments which I do not wish to be included in my named report can be included as confidential comments to the editors, which will not be published.

I agree to the open peer review policy of the journal