Reviewer's report

Title: GIT1 gene deletion delays chondrocyte differentiation and healing of tibial plateau fracture through suppressing proliferation and apoptosis of chondrocyte

Version: 0 Date: 06 Mar 2017

Reviewer: Sowmya Viswanathan

Reviewer's report:

Understanding the role of GIT1 in healing of tibial fractures, particularly the role in chondrocyte differentiation, proliferation and apoptosis is important in fracture healing and in other joint conditions including osteoarthritis.

The hypothesis that GIT1 deletion results in delayed recovery is only partially supported by the data provided by the authors. The introduction states that "we hypothesize that GIT1 gene expression deletion may decrease the formation of new blood vessels and osteoclasts, which becomes our study focus."

There is no data showing decreased osteoclast formation or blood vessel formation. In particular, they did not label control or experimental group with markers to show differentiation of chondrocytes to specific lineages. There is no labeling in Fig 1 to show decreased osteoclast or blood vessel invasion or decreased osteoblast formation between control and experimental groups.

The behavioral observations between the two groups is descriptive - there is no quantitative or semi-quantitative documentation. For example, rotarod experiments could have been used to quantify differences in locomotion/pain of the two groups. Were the experimental and control groups matched by age and weight? There is no table or information on the mice. It's also unclear whether the experimental and control groups were housed in same or different cages - there seems to be contradictory information with respect to this in the materials and methods section.

I'm not an expert in this area, but could some sort of semi-quantitative scoring or morphometric measurements have been used to quantify the area of the bone callus in the GIT1 group vs. the control group?
The authors use the word delay indicating that at some time point the GIT1 group does differentiate towards bone - but presumably this is after the 14 and 21 day data shown? If the word delay is being used, then some kinetic data indicating resumption of differentiation towards osteoblast lineages, and invasion by osteoclasts and blood vessels, and apoptosis of chondrocytes should be demonstrated. Otherwise, it's hard to see if it's the absence of this vs. a temporal delay.

In the discussion section, I'm unclear why there is an increase in bone mass of GIT1 KO mice if they result in decreased bone callus? Perhaps there's some point here that I missed, but the explanation was not very clear here.

For stats, can they show that the use of the tests is valid and the data is normally distributed with low residuals?

Overall, I thought the study method and experimental results could be further developed to support the original hypothesis.

Are the methods appropriate and well described?
If not, please specify what is required in your comments to the authors.

No

Does the work include the necessary controls?
If not, please specify which controls are required in your comments to the authors.

No

Are the conclusions drawn adequately supported by the data shown?
If not, please explain in your comments to the authors.

No

Are you able to assess any statistics in the manuscript or would you recommend an additional statistical review?
If an additional statistical review is recommended, please specify what aspects require further assessment in your comments to the editors.

I am able to assess the statistics
Quality of written English
Please indicate the quality of language in the manuscript:

Needs some language corrections before being published

Declaration of competing interests
Please complete a declaration of competing interests, considering the following questions:

1. Have you in the past five years received reimbursements, fees, funding, or salary from an organisation that may in any way gain or lose financially from the publication of this manuscript, either now or in the future?

2. Do you hold any stocks or shares in an organisation that may in any way gain or lose financially from the publication of this manuscript, either now or in the future?

3. Do you hold or are you currently applying for any patents relating to the content of the manuscript?

4. Have you received reimbursements, fees, funding, or salary from an organization that holds or has applied for patents relating to the content of the manuscript?

5. Do you have any other financial competing interests?

6. Do you have any non-financial competing interests in relation to this paper?

If you can answer no to all of the above, write 'I declare that I have no competing interests' below. If your reply is yes to any, please give details below.

I declare that I have no competing interests

I agree to the open peer review policy of the journal. I understand that my name will be included on my report to the authors and, if the manuscript is accepted for publication, my named report including any attachments I upload will be posted on the website along with the authors' responses. I agree for my report to be made available under an Open Access Creative Commons CC-BY license (http://creativecommons.org/licenses/by/4.0/). I understand that any comments which I do not wish to be included in my named report can be included as confidential comments to the editors, which will not be published.

I agree to the open peer review policy of the journal