Reviewer's report

Title: CASE REPORT: A GIANT ARACHNOID CYST MASKING ALZHEIMER'S DISEASE

Version: 3 Date: 06 May 2019

Reviewer: Kayako Matsuo

Reviewer's report:

I am disappointed to learn that I failed to make me understood efficiently. I was not writing about the "volume-based" approach that authors referred to. Instead, I was writing about, I would say, a "slice-based" approach. This is a fundamental of clinical fMRI. I just asked the authors perform this basic fMRI procedure using the "native" (i.e., original EPI) slices without a spatial registration.

In the processing of clinical fMRI, specifically that with a distortion, we often perform this kind of basic procedures first, and then apply an advanced approach. Otherwise, we cannot appreciate the real value of the advanced approach.

I have read the excellent PNAS paper from Dr. Van Essen's group (Coalson et al., 2018, "The impact of traditional neuroimaging methods on the spatial localization of cortical areas"). I found that the paper discussed the superiority of their surface-based method in spatial registration as compared to traditional methods. The spatial registration is crucial when we conduct a group analysis (with multiple subjects). Here, in this case study, the authors have only one patient. Actually, the "slice-based" approach has a minimum relationship with a spatial registration, or rather, in a sense, aims to avoid it. Instead, it will provide a direct view of a spatial relationship between the cyst and activation.

In addition, Coalson et al. (2018) only considered healthy young adult subjects from the HCP. These studies can never guarantee the accuracy of specific results by clinical population. Nevertheless, I recognize a significance of the authors' application of the surface-based method to the patient with a large cyst. For this reason, I would insist authors to follow a basic procedure of clinical fMRI. As the brain has a large distortion, we should first observe how activation manifests as it is at a very basic level using native EPI images. As a matter of fact, we researchers often naturally feel a motivation to confirm the very basic behavior of the data. After that, we can apply high technologies that may include some of image processing errors. If we have these two, we can then estimate the validity of the whole results to obtain a conclusion.

I will explain more details about the "slice-based" method to make sure.
The authors obtained 488 volumes of 22 slices from a patient's brain. Then, you have a number of voxels, each of which holds 488 time points. You could prepare a reference function of the task pattern (movement blocks vs. rest blocks) that have 488 time points. We typically convolve a hemodynamic response function to the reference function. Then, you could compute correlation coefficients between the reference function and each timeline from the voxels. Finally, you could visualize the significantly correlated voxels by overlaying them onto an average EPI. Many researchers usually conduct preprocessing including slice timing, realignment and/or smoothing before the correlation statistics, but I think it is up to you (I might avoid smoothing because of the cyst).

I hope the authors now clearly understand that the "slice-based" approach that I suggest is unrelated to spatial registration that Coalson et al. (2018) illustrated.

This work could be completed within 1 or 2 hours. I would use SPM software (using a general linear model) because it's simple and straightforward, but other software will also do. I am not quite sure but I believe FMRIB software would include this kind of basic analysis tools. Or you can also do that by yourself on MATLAB if you are familiar with MATLAB programing. In this case, it might be easier to perform the preprocessing in advance using software you prefer (if necessary).

The resultant maps by the "slice-based" approach would be compatible with the current results (I believe they will), or unfortunately not compatible. Even when they were not compatible, this fact would not hurt the value of the paper at all. On the contrary, it would provide valuable information on the image processing of brains with a large distortion.

I believe that the "slice-based" analysis described above is mandatory in clinical fMRI with a distorted brain. I am sorry to disagree with the authors. I would prefer to adhere rigidity to the basics. I also believe that many of other neuroimaging researchers would agree with my opinion.

Are the methods appropriate and well described?
If not, please specify what is required in your comments to the authors.

No

Does the work include the necessary controls?
If not, please specify which controls are required in your comments to the authors.

Unable to assess

Are the conclusions drawn adequately supported by the data shown?
If not, please explain in your comments to the authors.

Yes
Are you able to assess any statistics in the manuscript or would you recommend an additional statistical review?
If an additional statistical review is recommended, please specify what aspects require further assessment in your comments to the editors.

I recommend additional statistical review

Quality of written English
Please indicate the quality of language in the manuscript:

Acceptable

Declaration of competing interests
Please complete a declaration of competing interests, considering the following questions:

1. Have you in the past five years received reimbursements, fees, funding, or salary from an organisation that may in any way gain or lose financially from the publication of this manuscript, either now or in the future?

2. Do you hold any stocks or shares in an organisation that may in any way gain or lose financially from the publication of this manuscript, either now or in the future?

3. Do you hold or are you currently applying for any patents relating to the content of the manuscript?

4. Have you received reimbursements, fees, funding, or salary from an organization that holds or has applied for patents relating to the content of the manuscript?

5. Do you have any other financial competing interests?

6. Do you have any non-financial competing interests in relation to this paper?

If you can answer no to all of the above, write 'I declare that I have no competing interests' below. If your reply is yes to any, please give details below.

I declare that I have no competing interests.

I agree to the open peer review policy of the journal. I understand that my name will be included on my report to the authors and, if the manuscript is accepted for publication, my named report including any attachments I upload will be posted on the website along with the authors' responses. I agree for my report to be made available under an Open Access Creative Commons CC-BY license (http://creativecommons.org/licenses/by/4.0/). I understand that any comments which I do not wish to be included in my named report can be included as confidential comments to the editors, which will not be published.

I agree to the open peer review policy of the journal