Author’s response to reviews

Title: Angiographic Features of Drug-Induced Bilateral Angle Closure and Transient Myopia with Ciliochoroidal Effusion

Authors:

Yong Kang (kykyuri@gmail.com)
Byeong Son (supersbj@hanmail.net)
Dong Park (sarasate2222@hanmail.net)
Jae Pil Shin (eyedrshinjp@gmail.com;jps11@hanmail.net)

Version: 2 Date: 05 Sep 2019

Author’s response to reviews:

Dear Editor,

We appreciate your comments. The manuscript has been revised according to your comments and all changes to the manuscript are indicated in the text by highlighting in red. We hope now that it is ready for publication in BMC Ophthalmology

Reviewer A:

1. The definition of major or minor sign could be moved to Method instead in Result. And if it had, please add the references for the classification of major or minor.

Response: We moved the definition of major or minor sign to Method section. And we set the classification of angiographic finding based on standard protocol (reference 13).


Reviewer B

2. REQUESTED REVISIONS:

In particular, I'm not sure about pinpoint hyperfluorescence, leakage and diffuse choroidal hyperfluorescence. The authors should also submit the angiograms after the resolution of the clinical picture to provide show some kind of before/after comparison. In addition, the authors
should include ultrasound and UBM documentation of the disorder. Angiographic alterations due to choroidal effusion syndrome have been previously described. The authors should significantly implement their manuscript to offer some new detail. In particular, how can the circulatory imbalance be produced by the drugs? Which is the most evident angiographic sign and why does it occur?

Response: We agree to your comment and we revise the manuscript and figures.

1) The authors should also submit the angiograms after the resolution of the clinical picture to provide show some kind of before/after comparison

Response: We add the angiogram after resolution of the clinical picture.

We add Figure 2D which shows disappeared pinpoint hyperfluorescence in the late phase of ICGA after 1 month.

We add Figure 3C and 3D, which shows disappearance of choroidal stromal vessel hyperfluorescence and leakage after 1 month.

Figure 4 showed diffuse choroidal hyperfluorescence in the intermediate phase in case 1, which disappeared after recovery.

2) In addition, the authors should include ultrasound and UBM documentation of the disorder.

Response: We add the UBM and B-scan images of case 2 patient in figure 6, as representative.

3) How can the circulatory imbalance be produced by the drugs?

Response: The exact mechanism of drug-induced bilateral acute angle closure was not fully understood. Krieg et al. reported drug-induced ciliary body edema with transient myopia following exposure to sulphonamide diuretics. They postulated that sulphonamide diuretics stimulate the synthesis of prostaglandin E2 which can cause vasodilation with increased permeability and make ciliary body, retinal, and choroidal edema with breakdown of blood-aqueous barrier. We revise the discussion sentence and add possible mechanism of the circulatory imbalance (reference 15).


4) Which is the most evident angiographic sign and why does it occur?

Response: Hyperfluorescent dark spot (HDS) was most evident angiographic signs of all patients.
We don’t know exact mechanism of HDS, but we guess that HDS is extravascular transudate resulting from disturbed vascular permeability of the choroid.