Author's response to reviews

Title: A new anti-glioma therapy, AG119: Pre-clinical assessment in a mouse GL261 glioma model

Authors:

Rheal A Towner (Rheal-Towner@omrf.org)
Michael Ihnat (michael.ihnat@gmail.com)
Debra Saunders (Debra-Saunders@omrf.org)
Anja Bastian (anja.bastian1@gmail.com)
Nataliya Smith (Nataliya-Smith@omrf.org)
Roheeth Kumar Pavana (kp.roheeth@gmail.com)
Aleem Gangjee (gangjee@duq.edu)

Version: 3
Date: 6 April 2015

Author's response to reviews: see over
Apr. 6, 2015

Dr. Dafne Solera
Executive Editor, BMC Cancer
Dr. Caroline Black, Editorial Director, BMC-Series

Dear Drs. Solera and Black,

Please accept the revised manuscript (1848914497153822) entitled, “A new anti-glioma therapy, AG119: Pre-clinical assessment in a mouse GL261 glioma model”, authored by Towner, Ihnat, Saunders, Bastian, Smith, Pavana and Gangjee, to be considered as a Research Article for review and possible publication into BMC Cancer.

We have included line and page numbers in the manuscript document, included emails of each co-author, and the names of the relevant ethics committees, in the revised manuscript.

We have exciting pre-clinical data on the anti-cancer activity of a new anti-glioma agent, AG119, which we have found to be effective against GL261 gliomas in mice. AG119 is a unique compound that has both anti-angiogenic and anti-microtubule cytotoxic activity. MRI was used to assess tumor volumes and the effect of anti-tumor agents AG119, TMZ and antibody therapies against VEGF and c-Met in the GL261 model. Perfusion-weighted imaging was also used to calculate cerebral blood flow in untreated, and AG119 or TMZ-treated GL261 glioma-bearing mice. Additionally it was also found that IC$_{50}$ values for AG119 were much lower than those for TMZ in T98G and U251 cells. We believe that this compound, which is not subject to MGMT-mediated resistance, may be an effective anti-glioma agent.

Our research team is made up of experts in MR imaging and pre-clinical models for gliomas (Dr. Rheal A. Towner, and his research team, Dr. Nataliya Smith and Ms. Debra Saunders; all at OMRF), a preclinical small molecule anticancer drug discovery and development expert (Dr. Michael Ihnat, Univ. of Oklahoma Health Sciences Center; and his Ph.D. student, Anja Bastian), and an anti-cancer drug synthetic chemist expert (Dr. Aleem Gangjee; and his Ph.D. student, Roheeth Pavana).

This is an original manuscript that is unpublished work, and it is not being considered elsewhere. All authors on the manuscript have read the manuscript and are aware that the manuscript is being submitted to BMC Cancer. All authors also have no conflicts of interest regarding any of the work conducted in the submitted manuscript.

We look forward to a favorable decision regarding our submission.

Potential reviewers include:

Dr. Jasminka Pavelic, Laboratory of Molecular Oncology Ruder Boskovic Institute Bijenicka, Zagreb, Croatia; Tel: +385 1 456 0926; Email: jpavelic@irb.hr; Expert on multi-targeted anti-cancer agents
Dr. C-H Fan, Xuzhou Children’s Hospital, Xuzhou, China
Tel: +860516 85583006; Email: fch120@126.com; Expert on glioma resistance

Dr. Will Curry, Brain Tumor Center, Massachusetts General Hospital
Tel: 617-726-3779; Email: wcurry@partners.org; Glioma expert

Dr. Santosh Kesari, Moores Cancer Center, UC San Diego
Tel: 858-822-7524; Email: skesari@ucsd.edu; Glioma expert

Dr. Andy Sloan, Dept. of Neurological Surgery, Case Western Reserve Univ.
Tel: 216-844-2724; Email: asloan@neurosurgery.wayne.edu; Glioma expert

Best regards,

Rheal A. Towner, Ph.D.

Associate Member and Director,
Advanced Magnetic Resonance Center, OMRF

Associate Professor,
Depts. of Pathology, and Pharmaceutical Sciences, Univ. of Oklahoma Health Sciences Center
Associate Member, Stephenson Cancer Center, and Oklahoma Center for Neuroscience