Author's response to reviews

Title: Risk factors for antenatal vitamin D insufficiency in an urban district in Malaysia

Authors:

Noriklii Bukhary Ismail Bukhary (noriklii@yahoo.com)
Zaleha Md Isa (zms@ppukm.ukm.edu.my)
Khadijah Shamsuddin (khadijah@ppukm.ukm.edu.my)
Geok Lin Khor (geoklin_khor@imu.edu.my)
Zaleha Abdullah Mahdy (zaleha@ppukm.ukm.edu.my)
Haslinda Hassan (lynn_nidz@yahoo.com.my)
Noor Sharifatul Hana Yeop (sharifatul_hana@yahoo.com)

Version: 3
Date: 20 April 2015

Author's response to reviews: see over
April 20, 2015

Editor-in-Chief
BMC Public Health
BioMed Central

Dear Editor-in-Chief,

Thank you for the comments and feedback given. Below are the amendment made to the manuscript:

<table>
<thead>
<tr>
<th>No</th>
<th>Comments</th>
<th>Amendment / revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>1#</td>
<td>Methods: Provide a sample size calculation. If the sample size was fixed, provide a power determination - i.e. report which OR the study has the power of, say, 80% to identify as significant at the, say, 5% significance level. Usually it is not necessary to present the formula, but the assumptions should be stated.</td>
<td>Page 3, Row 110 until 114: This study was a cross-sectional study. Sample size was calculated using Power and Sample Size Programme (PS2). The sample size required after considering the risk factors [13,14,15] and the outcome (vitamin D insufficiency) [16] from previous studies was 381 participants. The figure was obtained after taking into consideration additional 20% of possible non-response with 80% power and $\alpha =0.05$ (for 95% CI).</td>
</tr>
<tr>
<td>2##</td>
<td>Methods: Please explain your multivariable modelling strategy. Which inclusion criteria did you use, i.e. how did you decide which variables to be considered for inclusion into the multivariable model; which exclusion criteria did you use, i.e. how did you decide whether a variable should be kept in the final model or be excluded from it. If you have used statistical tests for any of these decisions, state which one(s).</td>
<td>Page 4, Row 119 until 136 Starting from “The inclusion criteria were Malaysian pregnant women in...... However, 396 (99%) respondents completed all the requirements for the study.</td>
</tr>
</tbody>
</table>

Statistical analysis
3# Methods: Replace FFQ by the term this acronym stands

1) Methods in abstract: Page 2, row 51-52

2) Methods: Page 4, row 132

validated semi-quantitative food frequency questionnaire for vitamin D in Malaysia (FFQ vitamin D / My)

4# Table 1: Replace "Mean (SD)" by Mean +/- SD

Done in Table 1 (Page 17)

5# Table 3: Reduce the number of figures to what is essential - neither the column B nor the column Wald Statistic (df) adds any insight that is not available from other column. If you decide to delete the column "Wald statistic" add in a footnote that the p values have been derived from Wald tests.

Page 20: Column B and column Wald had been removed

And add in a footnote “p values have been derived from Wald tests”.

6# Table 4: Consider dropping the columns B, Standard Error, Wald test (df) - they are redundant. If you agree to this, consider combining table 3 and 4 into one table.

Page 22: Column Standard Error and column Wald test had been removed

Unable to remove the column B as it is used in the forecast model for vitamin D insufficiency (row number 208-211)

#consider or ##make the changes

We hope that you will consider this manuscript for publication.

Thank you.

Best wishes,

Norikil Bukhary
On behalf of corresponding author