Author’s response to reviews

Title: Quality of Prenatal Care Questionnaire: psychometric testing in an Australia population

Authors:

Wendy Sword (sword@mcmaster.ca)
Maureen Heaman (maureen.heaman@umanitoba.ca)
Mary Anne Biro (maryanne.biro@monash.edu)
Caroline Homer (caroline.homer@uts.edu.au)
Jane Yelland (jane.yelland@mcri.edu.au)
Noori Akhtar-Danesh (daneshn@mcmaster.ca)
Amanda Bradford-Janke (bradfor@mcmaster.ca)

Version: 2
Date: 16 June 2015

Author’s response to reviews: see over
June 16, 2012

Dr. Diana Marshall
Senior Managing Editor
BMC-series Journals

Thank you for providing the reviewers’ comments and the opportunity to revise and resubmit our manuscript titled, *Quality of Prenatal Care Questionnaire: psychometric testing in an Australia population*. We have provided our response to each comment in bold.

Major Compulsory Revisions

1. Provide criteria for evaluation of model fit (CFA). Although the authors suggest that the CFA was successful, there is no evidence provided for the reader to discern this for him/herself. At a bare minimum, a CFA should include chi square, p value for chi square, CFI, RMSEA, and potentially SRMR values as well. Up-to-date cut-offs for these should be explicated so that the reader can determine whether the model fits the data.

 We included these measures in the approach to data analysis (p. 10) and provided the statistics in the results section (p. 11).

2. Similarly, it is unclear whether the CFA has an orthogonal structure (factors are unrelated), oblique structure (correlated factors), or whether a bi-factor approach is tested, whereby a global factor + factors for each of the sub scales is tested (see Gignac’s work for details on bifactor models). e.g., Gignac & Watkins (2013). Multivariate Behavioral Research, 48(5), 639-662.

 We clarified in the results section (p. 11) that the analysis yielded an oblique factor structure for the QPCQ.

3. Furthermore, it would be useful to provide a table of factor loadings from the CFA. The reliability estimates and item-total correlation scores are less useful as the total score in these calculations conflates measurement error and true score variance, whereas the CFA separates these appropriately.
We did not provide a table of factor loadings from the confirmatory factor analysis (CFA). Unlike exploratory factor analysis where each variable can load on any factor, in CFA variables load on only one factor so therefore the loading on other factors is zero.

4. There is a similar lack of explanation of criteria to determine whether the reported correlations establish convergent and construct validity. What is a sufficient correlation size to confidently claim evidence of validity?

We clarified in the results section (p. 11) that the correlations are relatively good based on the suggestions of Polit and Beck (2012).

Minor Essential Revisions

1. The methods are appropriate, however regarding the data collection, would it possible for the co-authors to give more information about the time window used to administer the questionnaires.

We included the time frame for data collection under “Recruitment and Data Collection Procedures” (p. 9).

2. Regarding the results/discussion sections

 a. If possible, could the authors give information on the non-participants (number, reasons for not participating, sociodemographic data, etc.)

 We did not have consent to collect information from non-participants.

 b. In the discussion, authors stated that the correlation between the QPCQ total score and the Satisfaction subscale score of the PESPC was lower in the Australian group of women compared to the group of Canadian women. Also, the convergent validity of the QPCQ was not as robust when tested in an Australian population. Would it possible to explain differences between the Canadian and the Australian results in assessing validity (differences in participants’ socio-demographic characteristics for example, etc.).

 We were unable to come up with a logical explanation for differences in correlations in validity testing but have added the following statement in the discussion section (p. 12): “The reasons for the differences in correlations in validity testing between the Australian and Canadian settings are not fully understood, but might be related to differences in participant characteristics. Women in the Australian sample started prenatal care at a later mean gestational age than women in the Canadian sample (12.9 vs 10.6 weeks); the Australian sample had a higher proportion of primiparous women (42.3% vs 37.2%) and women who received midwifery care (67.2% vs
9.2\%), and a lower proportion of women who were married (58.1\% vs 67.3\%), born in the host country (65.6\% vs 75.4\%), and had less than a high school education (14.3\% vs 8.0\%) compared to women in the Canadian sample.

Sincerely,

Wendy Sword, RN, PhD
Director and Associate Dean