Reviewer’s report

Title: Fructo-Oligosaccharides Ameliorate Steatohepatitis, Visceral Adiposity, and Associated Chronic Inflammation via Increased Production of Short-Chain Fatty Acids in a Mouse Model of Non-alcoholic Steatohepatitis

Version: 0 Date: 27 Nov 2019

Reviewer: Emanuele Albano

Reviewer's report:

Please include all comments for the authors in this box rather than uploading your report as an attachment. Please only upload as attachments annotated versions of manuscripts, graphs, supporting materials or other aspects of your report which cannot be included in a text format.

Please overwrite this text when adding your comments to the authors.

The manuscript by Takai and co-workers investigates the effects of fructo-oligosaccharides (FOS) on steatohepatitis and visceral adiposity in a model of NASH based on the induction of over-feeding by the administration of monosodium glutamate (MSG) to newborn C57BL/6J mice. The authors observed that FOS treatment improved steatosis, inflammation and hepatocyte ballooning in the liver of mice with NASH. These effects were associated with a lowering in the hepatic mRNA expression of fatty acid synthase and glycerol-3-phosphate acyltransferase. Furthermore, FOS inhibited adipocyte enlargement and macrophage recruitment in epididymal fat in parallel with changes in gut microbiota composition and increased fecal concentrations of short chain fatty acids (SCFA) suggesting that FOS action on dysbiosis might influence the development of metabolic derangements leading to steatohepatitis.

The work is interesting and has a potential translational impact. However, additional data are required to support the author's conclusions. The following points need attention:

a) Figure 1 shows that FOS supplementation improves body weight as well as epididymal fat expansion and inflammation. Nonetheless, the effects on adipose tissue require a better characterization from the metabolic and inflammatory point of view by measuring glucose tolerance and insulin response, assessing adipose tissue expression of pro-inflammatory cytokines and the production of adipokines.

b) The characterization of FOS action on NASH is also insufficient. Liver triglyceride content need to be shown along with the liver or circulating levels of pro-inflammatory cytokines.

c) The authors have previously shown that FOS supplementation improves intestinal barrier function in MCD fed mice. It would be important to evaluate how much such an effect accounts for ameliorating NASH in this model. The measurement of circulating LPS levels can address this issue.
d) It is interesting that FOS reduced inflammatory cells infiltration in the adipose tissue, but the data presented are insufficient to substantiate histology. Flow cytometry should be used to show the changes in the prevalence of F4/80+/CD11b+ macrophages and of B and T lymphocytes. Furthermore, M1 macrophages are identified as F4/80+/CD11b+/Ly6Chigh cells. The use of CD11c is not a suitable marker.

e) The overall impact of the work would be increased by investigating whether FOS supplementation is also effective in ameliorating dybiosis and liver alterations with more widely used model of NASH such as the high fat western diet.

Are the methods appropriate and well described?
If not, please specify what is required in your comments to the authors.

Yes

Does the work include the necessary controls?
If not, please specify which controls are required in your comments to the authors.

Yes

Are the conclusions drawn adequately supported by the data shown?
If not, please explain in your comments to the authors.

Yes

Are you able to assess any statistics in the manuscript or would you recommend an additional statistical review?
If an additional statistical review is recommended, please specify what aspects require further assessment in your comments to the editors.

I am able to assess the statistics

Quality of written English
Please indicate the quality of language in the manuscript:

Needs some language corrections before being published
Declaration of competing interests

Please complete a declaration of competing interests, considering the following questions:

1. Have you in the past five years received reimbursements, fees, funding, or salary from an organisation that may in any way gain or lose financially from the publication of this manuscript, either now or in the future?

2. Do you hold any stocks or shares in an organisation that may in any way gain or lose financially from the publication of this manuscript, either now or in the future?

3. Do you hold or are you currently applying for any patents relating to the content of the manuscript?

4. Have you received reimbursements, fees, funding, or salary from an organization that holds or has applied for patents relating to the content of the manuscript?

5. Do you have any other financial competing interests?

6. Do you have any non-financial competing interests in relation to this paper?

If you can answer no to all of the above, write 'I declare that I have no competing interests' below. If your reply is yes to any, please give details below.

No compelling interests

I agree to the open peer review policy of the journal. I understand that my name will be included on my report to the authors and, if the manuscript is accepted for publication, my named report including any attachments I upload will be posted on the website along with the authors' responses. I agree for my report to be made available under an Open Access Creative Commons CC-BY license (http://creativecommons.org/licenses/by/4.0/). I understand that any comments which I do not wish to be included in my named report can be included as confidential comments to the editors, which will not be published.

I agree to the open peer review policy of the journal