Author's response to reviews

Title: Fracture diagnostics, unnecessary travel and treatment: a comparative study before and after the introduction of teleradiology in a remote general practice

Authors:

Jac. JWM Jacobs (jiwmjacobs@gmail.com)
Jan PAM Jacobs (j.p.a.m.jacobs@rug.nl)
Eric van Sonderen (F.L.P.van.Sonderen@umcg.nl)
Thys van der Molen (t.van.der.molen@med.umcg.nl)
Robbert Sanderman (R.Sanderman@umcg.nl)

Version: 6 Date: 17 April 2015

Author's response to reviews: see over
Responses to editorial referees

Below we address each concern and describe how we incorporated them into the revision (shown in italics).

Comment 1: An explicit ethics statement needs to be added to the manuscript, stating that ethics approval was not required.

We included an explicit ethics statement at the end of the Methods section (pp8-9):

Ethics statement

Because the study is retrospective with data anonymized from patients records, it falls outside the Medical Research Involving Human Subjects Act (WMO) in the Netherlands and does not need to be approved by a medical ethics committee. We followed the Health Research Guidelines (Gedragscode Gezondheids Onderzoek 2004), which are based on the Medical Treatment Law (WGBO) and the Privacy Protection Law (Wbp). The use of anonymized data in medical research that cannot be traced back to individual patients is allowed. This study is based on anonymized medical records of the GP, which were completed by information obtained from patients after informed consent by a physician assistant.

Comment 2: STROBE checklist, as an additional file.

We have checked the STROBE checklist and this paper complies with the checklist.
The STROBE checklist of items for reports of observational studies is included below:

<table>
<thead>
<tr>
<th>Item No</th>
<th>Recommendation</th>
</tr>
</thead>
</table>
| 1 | (a) Indicate the study’s design with a commonly used term in the title or the abstract
Fracture diagnostics, unnecessary travel and treatment: a comparative study before and after the introduction of teleradiology in a remote general practice
(b) Provide in the abstract an informative and balanced summary of what was done and what was found |

Abstract

Background: Teleradiology entails attainment of x-rays in one location, transfer over some distance and assessment at another location for diagnosis or consultation. This study documents fracture diagnostics, unnecessary trips to the hospital, treatment and number of x-rays for the years 2006 and 2009, before and after the introduction of teleradiology in a general practice on the island of Ameland in the north of the Netherlands.

Methods: In a retrospective, descriptive, observational before and after study of the introduction of x-ray facilities in an island-based general practice, we compared the number of accurately diagnosed fractures, unnecessary trips, treatments and number of x-rays taken in 2006 when only a hospital x-ray
facility was available 5 hours away with those in 2009 after an x-ray facility became available at a local general practice. All patients visiting a general practice on the island of Ameland in 2006 and 2009 with trauma and clinical suspicion of a fracture, dislocation or sprain were included in the study. The initial clinical diagnoses, including those based on the outcomes of x-rays, were compared for the two years and also whether the patients were treated at home or in hospital.

Results: A total of 316 and 490 patients with trauma visited a general practice in 2006 and 2009, respectively. Of these patients, 66 and 116 were found to have fractures or dislocations in the two years, respectively. In 2006, 83 x-rays were ordered; in 2009, this was 284. In 2006, 9 fractures were missed; in 2009, this was only 2. In 2006, 15 patients with fractures or dislocations were treated at the general practice; in 2009, this had increased to 77.

Conclusion: Since the introduction of teleradiology the number of missed fractures in patients visiting the general practice with trauma and the number of the unnecessary trips to a hospital are reduced. In addition more patients with fractures and dislocations can be treated in the general practice as opposed to the hospital.
Introduction

Background/rationale

2 Explain the scientific background and rationale for the investigation being reported

Teleradiology is the electronic transmission of radiological images from one location to another for the purpose of interpretation and/or consultation. This technique has proliferated in many countries but not yet in the Netherlands [1]. In the Netherlands, all x-rays are obtained in hospitals or diagnostic centres and subsequently assessed by radiologists. In many other countries, x-rays are obtained in the general practices themselves and reviewed by the general practitioners (GPs). When judged necessary, a radiologist may sometimes be consulted with the use of teleradiology [2,3].

In the Netherlands, an average of 42-43 per 1000 patients experience new traumas and visit a general practice annually: 27 with strains on average; 13-14 with fractures on average; and 2 with dislocations on average [4]. For trauma patients with suspected fractures or dislocations, Dutch healthcare guidelines require x-ray confirmation of the fracture or dislocation in hospital, followed by either conservative or surgical treatment by a surgeon [5,6]. The GP in the Netherlands today normally refers the patient to the hospital for x-ray. Trauma patients with suspected strains, in contrast, are
typically treated only on the basis of clinical signs by general practitioner.

In a relatively remote location, the island of Ameland in the north of the small country of the Netherlands, teleradiology was recently introduced. Prior to 2007, all patients with suspected fractures received plaster splints at the general practice for immobilization or when necessary following deformity correction, and were sent to the hospital for further x-ray examination (which is in keeping with the normal procedure in The Netherlands). These patients frequently returned with the same plaster splints following x-ray confirmation of the fracture or successful repositioning. In fact, at that time, such trauma patients often only travelled to the hospital to have the x-rays taken. Given that the hospital takes a ferry trip to be reached, the threshold for a referral to the hospital was (and is) very high. The physical examination at the general practice had to strongly suggest a fracture or dislocation for referral to the hospital; fractures of the phalanx (i.e., fingers or toes) or habitual shoulder dislocation were often treated in the general practice without x-ray back then.

<table>
<thead>
<tr>
<th>Objectives</th>
<th>3</th>
<th>State specific objectives, including any prespecified hypotheses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Medical diagnosis always has the risk of missing something, on</td>
</tr>
</tbody>
</table>
the one hand, versus unnecessary referral, on the other hand (i.e., patients travelling to hospital for nothing in the end). This dilemma and particularly the high threshold for ordering supplemental diagnostics in a rural location as Ameland was expected to disappear when a GP obtained access to an x-ray facility and introduced teleradiology to communicate with a hospital (i.e., radiologists and surgeons).

Telemedicine has received considerable attention in the research literature but teleradiology much less [3]. In the present study, it was therefore decided to investigate the following question: what is the influence of the introduction of an x-ray facility in a remote GP practice on accurately diagnosed fractures, hospital visits, number of x-rays and treatment. It was expected that the number of missed fractures and unnecessary hospital referrals (trips to the hospital) would decline with the introduction of teleradiology. We did not expect huge changes in treatment and number of x-rays, i.e. that clinical indications for x-rays would be unaffected.

<table>
<thead>
<tr>
<th>Methods</th>
<th>Present key elements of study design early in the paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study design</td>
<td>A retrospective, descriptive, observational before and after</td>
</tr>
</tbody>
</table>
Setting

<table>
<thead>
<tr>
<th>Setting</th>
<th>5</th>
<th>Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection</th>
</tr>
</thead>
</table>

Setting and preparation

Ameland is an island with 3500 inhabitants and 20 times as many tourists during the busy season (summer). Medical care is delivered at two general practices, which also in cases of emergencies serve the function of emergency room. The nearest hospital is in Dokkum on the mainland, with a travelling time of approximately five hours, including a ferry trip.

The teleradiology facility is installed in one of the two general practices but available for use with all patients — including those from the other GP on the island and tourists. When needed, the x-rays are taken by a trained radiographer working in the general practice and digitally transmitted to the hospital in Dokkum where the x-ray information is evaluated and interpreted by a trained radiologist. The radiologists are available during regular office hours and for emergency
situations 24 hours a day, 7 days a week. In consultation with the surgeon in the hospital, it is decided whether the patient in question can be treated in the general practice under the supervision of a surgeon or should be treated in hospital. The radiographer is a full-time employee of the general practice and responsible only for the taking of x-rays and not for the interpretation of these.

The radiologist always responds digitally on the same day and, if necessary, directly by phone. The radiologist may sometimes give the radiographer special instructions for the x-rays by phone. The hospital’s x-ray protocol is followed. The radiographer receives ongoing feedback on the quality of the x-rays taken. And the radiographer receives annual training at the hospital.

The indications for an x-ray are twofold, namely: 1) trauma in the form of fractures or dislocations and 2) non-trauma requiring x-ray for monitoring or surgical purposes (e.g., x-ray in cases of hip degeneration, knee problems, and lung carcinoma).

In the present setting, the GP was trained as a radiation expert. Together with the Institute of Nuclear Services for Energy, Environment and Health in the Netherlands, the GP is also
responsible for all radiation hygiene and safety within the
general practice. The costs of the x-rays and the honorarium for
the radiologist are covered by the patient’s insurance. The x-
rays made in the general practice are stored together with any
x-rays made at the hospital in the Picture Archiving and
Communication System (PACS) of the hospital.

We compared the health outcomes for patients who visited the
general practice with a recent trauma in 2006 — the year before
the introduction of the teleradiology facility — and patients who
visited the GP with a recent trauma in 2009 — the second year
after the introduction of the facility and the most recent year for
which data was available. Only traumas related to the
musculoskeletal system (i.e., strains, fractures and dislocations)
were investigated.

<table>
<thead>
<tr>
<th>Participants</th>
<th>6</th>
</tr>
</thead>
</table>

(a) Cohort study—Give the eligibility criteria, and the sources
and methods of selection of participants. Describe methods of
follow-up

Case-control study—Give the eligibility criteria, and the sources
and methods of case ascertainment and control selection. Give
the rationale for the choice of cases and controls

Cross-sectional study—Give the eligibility criteria, and the
sources and methods of selection of participants

Retrospective, all the patients who visited the GP in 2006 and
2009 with the above mentioned traumas were selected from the
Promedico database by the GP himself

(b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed

Case-control study—For matched studies, give matching criteria and the number of controls per case

<table>
<thead>
<tr>
<th>Variables</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable</td>
</tr>
</tbody>
</table>

On the basis of their initial clinical signs, the patients were categorized into six groups: (1) clear deformity, (2) pain due to weight bearing or axial compression, (3) local pressure pain, (4) haematoma, (5) stiffness, (6a) no disorder or (6b) immobilized. Patients in group 1 definitely had a fracture or dislocation and needed treatment as soon as possible — preferably following x-ray confirmation of the condition.

Patients in group 2 had suspected fractures which had not yet been confirmed but called for an x-ray. Patients in group 3 had strains but also the possibility of fracture(s) and were instructed to return for re-examination if still in doubt about the diagnosis after two days [4,5]. Patients in groups 4, 5 and 6a showed minimal trauma and no apparent fracture. The patients in group 6b had been immobilized (re-trauma), which precluded physical examination in the general practice.

Data sources/ 8* For each variable of interest, give sources of data and details of
methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group

Information was also gathered from the above mentioned database on the clinical diagnosis, whether an x-ray was obtained or not, undertaken treatment, location of treatment (hospital or general practice), the practice with which the patient was registered and the x-ray was ordered (GPs from both general practices on the island could order x-rays) and final diagnosis.

<table>
<thead>
<tr>
<th>Bias</th>
<th>9</th>
<th>Describe any efforts to address potential sources of bias</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>The GP anonymized the selected data (including the information gathered by the physician assistant) and a medical student imported these data into a registration system of the University Medical Centre Groningen. International Classification of Primary Care (ICPC) codes were assigned</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study size</th>
<th>10</th>
<th>Explain how the study size was arrived at</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>all the patients who visited the GP in 2006 and 2009 with the above mentioned traumas were selected from the Promedico database by the GP himself</td>
</tr>
</tbody>
</table>
Quantitative variables

11 Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why.

The initial ICPC diagnoses (diagnosis at the moment of treatment) were then compared to the final ICPC diagnoses (diagnosis collected after a period by the physician assistants phone call or from the medical outcome).

On the basis of their initial clinical signs, the patients were categorized into six groups: (1) clear deformity, (2) pain due to weight bearing or axial compression, (3) local pressure pain, (4) haematoma, (5) stiffness, (6a) no disorder or (6b) immobilized.

Information was also gathered from the above mentioned database on the clinical diagnosis, whether an x-ray was obtained or not, undertaken treatment, location of treatment (hospital or general practice), the practice with which the patient was registered and the x-ray was ordered (GPs from both general practices on the island could order x-rays) and final diagnosis.

Statistical methods

12 (a) Describe all statistical methods, including those used to control for confounding

(b) Describe any methods used to examine subgroups and interactions
(c) Explain how missing data were addressed

(d) **Cohort study**—If applicable, explain how loss to follow-up was addressed

Case-control study—If applicable, explain how matching of cases and controls was addressed

Cross-sectional study—If applicable, describe analytical methods taking account of sampling strategy

(e) Describe any sensitivity analyses

Not applicable
Results

Participants 13*

(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed

In 2006 and 2009, respectively, 316 and 490 patients visited the general practice with recent traumas. Our sample consists of 312 patients in 2006 and 482 patients in 2009

(b) Give reasons for non-participation at each stage

From these 56 (2006) and 77 (2009) were contacted by phone; 4, 7 respectively could not be reached and one patient in 2009 refused to answer the questionnaire.

(c) Consider use of a flow diagram

See figure 1 and 2

Descriptive data 14*

(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders

(b) Indicate number of participants with missing data for each variable of interest

(c) Cohort study—Summarise follow-up time (eg, average and total amount)
In 2006, 83 patients (26.6%) were referred to hospital. For 41 of them (49.4%), this trip proved unnecessary; they did not have fractures and were treated further by the GP. In 2009, 39 patients (8.1%) were referred to hospital: 3 of these directly without x-ray in the general practice; 2 with a CT scan indication due to high-energy trauma; and 1 with a complicated tibia/fibula fracture. In retrospect, the two trips for the patients with the CT indications (0.4%) proved only precautionary.

In 2006, a total of 83 x-rays were taken on 26.6% of the total number of patients visiting the general practice for recent trauma. In 2009, 281 x-rays were taken on 57% of the total number of trauma patients visiting the general practice.

In 2006, 66 (21%) of the patients had fractures or dislocations and 9 (13.6%) of these were missed. In 2009, 116 (24.1%) of the patients had fractures or dislocations and 2 (1.7%) of these were missed. The general practitioner treated 15 patients (22.8%) without x-ray confirmation in hospital in 2006 and 77 patients (66.4%) after x-ray confirmation in the general practice itself in 2009.

<table>
<thead>
<tr>
<th>Outcome data</th>
<th>15*</th>
<th>Cohort study—Report numbers of outcome events or summary measures over time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Case-control study—Report numbers in each exposure category, or summary measures of exposure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cross-sectional study—Report numbers of outcome events or summary measures</td>
</tr>
</tbody>
</table>
The majority of the fractures were radius/ulna, phalanx, metacarpal and tibia/fibula fractures (see Table 3). The 9 missed fractures in 2006 consisted of 3 radius/ulna, 4 tibia/fibula and 2 vertebral fractures. These fractures were much more severe than the 2 missed toe phalanx fractures in 2009.

Main results 16

(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (e.g., 95% confidence interval). Make clear which confounders were adjusted for and why they were included

(b) Report category boundaries when continuous variables were categorized

(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period

The breakdown of the trauma patients with suspected fracture or dislocation on the basis of initial physical examination is as follows (see Table 4). In 2006, 23 trauma patients (8.5%) were identified as having deformities (group 1); in 2009, this was 37 (9.6%). In 2006, 20 of these patients were sent to the hospital for x-ray confirmation of the deformity after correction and immobilisation at the general practice; 3 of them had habitual shoulder dislocations and were treated by the GP without a visit to hospital. In 2009, 36 of the 37 trauma patients with suspected
deformities (group 1) had an x-ray confirmation at the general practice before correction and/or immobilisation of the dislocation and x-ray checking again afterwards. In the end, 31 of these patients — including the patient mentioned above with the complicated tibia/fibula fracture — were sent to hospital for further treatment in 2009 and 6 were treated solely in the general practice.

The group of patients with axial compression pain (group 2) consisted of 67 (24.7%) patients in 2006 and 162 (42.1%) in 2009. Of these patients, 46 and all 162 had x-rays taken for 15 and 59 fractures, respectively. In 2006, 5 patients returned after two days for repeated x-ray and three of them were found to have fractures.

The group of patients with local pressure pain (group 3) consisted of 181 (66.8%) patients in 2006 and 186 (48.3%) in 2009. Of these patients, 16 of 2009 had an x-ray taken directly with 10 fractures and 11 and 47, respectively, had x-rays taken after two days. In 2006, 3 of these 11 patients were found to have fractures; in 2009, none of the 47 patients undergoing follow-up x-ray were found to have fractures. In 2009, 19 patients with a new trauma which occurred while in plaster immobilisation for a previous fracture (group 6b) had an immediate x-ray; 8 of them had a re-fracture and were further treated at the general practice. The group of patients with minor trauma (group 4, 5, 6a) consisted of 41 patients in 2006 and 97 in 2009. In 2006 one patient
complained of stiffness and was immobilized transported to the general practice by an ambulance because of a high energy trauma. He was sent directly to the hospital with a cervical vertebra fracture suspicion where it was confirmed and treated.

Figures 2 and 3 in the Appendix connect the results presented in Tables 2 and 4. Clear differences in the thresholds for x-ray (82 at hospital in 2006; 281 at GP in 2009) can be seen. Doubt about a fracture (followed by a re-examination after two days) existed for all of group 3 and part of group 2 in 2006, but only for part of group 3 in 2009. Similarly, clear differences in the treatment of fractures by the GP under the supervision of a surgeon can be seen zero in 2006; 69 in 2009. Moreover, all of the fractures for group 3 and most of those for group 2 could be treated by the GP under the guidance of a surgeon in 2009 (highlighted in red).

<table>
<thead>
<tr>
<th>Other analyses</th>
<th>17</th>
<th>Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

Discussion

Key results 18 Summarise key results with reference to study objectives

There is a clear difference in outcomes between 2006 and 2009. Fewer fractures were missed and no severe fractures whatsoever were missed.
Fewer patients had to make the unnecessary trip to the hospital five hours away. In 2006, 41 patients (13.1%) were found at the hospital to not have a fracture. In 2009, only 2 patients (0.4%) with a CT-scan indication were found to not have a fracture and therefore had travelled unnecessarily to the hospital. These differences ran parallel with the introduction of teleradiology into the general practice and yielded significant benefits for patients.

A further benefit of this introduction was that more fractures and dislocations could be treated by the GP. In 2009, 77 of the patients with fractures or dislocations (66.4%) could be treated by the GP under the supervision of a surgeon. In 2006, no patients could be treated in this manner. Moreover, in 2006 15 patients (22.5%) with mostly phalanx fractures or dislocations were treated by the general practitioner without x-ray confirmation of the fractures or dislocation, which is not in accordance with Dutch guidelines which require an x-ray confirmation [5,6].

An unexpected advantage of teleradiology was that immobilised patients with re-fractures as a result of new traumas could be diagnosed and treated by the GP. In previous years, this would have required a trip to the hospital.

An unexpected side effect was that more x-rays were taken with the availability of teleradiology, particularly for patients with uncertain
clinical signs of fracture (patients in groups 2 and 3). Following the introduction of teleradiology, the percentage of patients with an unclear fracture returned for re-examination became more than twice as much than before. This suggests that the introduction of teleradiology created demand. However the introduction of teleradiology enables general practitioners to work in keeping with Dutch guidelines [5,6] and saves patients time, money and the anxiety of not knowing the outcome of a traumatic event.

<table>
<thead>
<tr>
<th>Limitations</th>
<th>19</th>
<th>Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias</th>
</tr>
</thead>
</table>

A limitation is that we did not carry out a (randomized) controlled experiment, because of medical ethical reasons. Hence the difference in outcomes can in theory not only be attribute to the introduction of teleradiology. However since the GP’s, radiologists, surgeons, physical assistants and procedures were the same in 2006 and 2009, we have strong reasons to believe that the documented changes in outcomes are due to the introduction of teleradiology in the general practice.

Another possible limitation is that the samples from 2006 and 2009 were
obviously obtained from different populations. Given that we could not contact all of the patients for follow up, there may have been more missed fractures. The number of research years (i.e., 2006 versus 2009) is small and also a possible limitation on the present study. Due to changes in the staffs of the general practice and the radiologists of the hospital radiology department in January 2010, it was not possible to continue data collection beyond 2009.

<table>
<thead>
<tr>
<th>Interpretation</th>
<th>20</th>
<th>Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generalisability</td>
<td>21</td>
<td>Discuss the generalisability (external validity) of the study results</td>
</tr>
</tbody>
</table>

The present paper study suggests that teleradiology in a general practice has clear benefits in terms of reducing the number of missed fractures, unnecessary trips to the hospital and increasing the possibilities for treatment at home.

Teleradiology is thus a good example of healthcare which can be transferred from hospitals to primary healthcare centres, despite the finding that, following the Dutch Guidelines more x-rays were requested — particularly for patients with uncertain clinical signs of fractures. This conclusion presumably holds for other general practices in rural
areas and other countries as well.

<table>
<thead>
<tr>
<th>Other information</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funding</td>
<td></td>
</tr>
</tbody>
</table>

Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based.

This pilot study was financially supported by De Friesland Zorgverzekeraar [The Friesland Insurance Company]. There was no conflict of interest, however. The authors thus have no competing interest.

Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.