Author's response to reviews

Title: Safety, Pharmacokinetics and Pharmacodynamics of Remogliflozin Etabonate, a Novel SGLT2 Inhibitor, and Metformin when Co-administered in Subjects with Type 2 Diabetes Mellitus

Authors:

Elizabeth K Hussey (elizabeth.k.hussey@gsk.com)
Anita Kapur (akapur@cumberlandpharma.com)
Robin O' Connor-Semmes (robin.l.o'connor-semmes@gsk.com)
Wenli Tao (wenli.x.tao@gsk.com)
Jorge Poo (jpoo@medicasur.org.mx)
Esteban Rios (eriosb@medicasur.org.mx)
Bryan Rafferty (Bryan.m.rafferty@gsk.com)
Joseph W Polli (Joseph.w.polli@gsk.com)
Chuck D James (Cdjunc1@yahoo.com)
Robert L Dobbins (robert.l.dobbins@gsk.com)

Version: 2 Date: 5 March 2012

Author's response to reviews: see over
Title: Safety, Pharmacokinetics and Pharmacodynamics of Remogliflozin Etabonate, a Novel SGLT2 Inhibitor, and Metformin when Co-administered in Subjects with Type 2 Diabetes Mellitus.

Authors: 1Elizabeth K. Hussey, Pharm. D; 1Anita Kapur, PhD; 1Robin O’Connor-Semmes, PhD, 1Wenli Tao, PhD, 2Jorge Poo, MD; 2Esteban Rios, MD 1Bryan Rafferty, BSc, 1Joseph W Polli, PhD, 1Chuck D James, BSc, 1Robert L Dobbins, MD, PhD.

Affiliations: 1GlaxoSmithKline, Research Triangle Park, NC, USA; 2Medica Sur Hospital and Clinical Foundation, CIFBIOTEC, Mexico City, Mexico

Corresponding author:
Elizabeth K. Hussey, Pharm. D, GlaxoSmithKline, 5 Moore Drive, Research Triangle Park, NC 27709, USA.
Telephone: 919-483-7087
Fax: 919-315-4276
E-mail: Elizabeth.K.Hussey@gsk.com

Key words: Remogliflozin etabonate, SGLT2 inhibitor, metformin, pharmacokinetics, type 2 diabetes mellitus

Author email addresses:
Elizabeth K Hussey: elizabeth.k.hussey@gsk.com
Anita Kapur: akapur@cumberlandpharma.com
Robin O’Connor-Semmes: robin.l.o’connor-semmes@gsk.com
Wenli Tao: wenli.x.tao@gsk.com
Jorge Poo: jpoo@medicasur.org.mx
Esteban Rios: eriosb@medicasur.org.mx
Bryan Rafferty: Bryan.m.rafferty@gsk.com
Joseph W Polli: Joseph.w.polli@gsk.com
Chuck James: Cdjunc1@yahoo.com
Robert L Dobbins: robert.l.dobbins@gsk.com
Abstract

The sodium-dependent glucose co-transporter-2 (SGLT2) is expressed in absorptive epithelia of the renal tubules. Remogliflozin etabonate (RE) is the prodrug of remogliflozin, the active entity that inhibits SGLT2. An inhibitor of this pathway would enhance urinary glucose excretion (UGE), and potentially improve plasma glucose concentrations in diabetic patients. RE is intended for use for the treatment of type 2 diabetes mellitus (T2DM) as monotherapy and in combination with existing therapies. Metformin a dimethylbiguanide, is an effective oral antihyperglycemic agent widely used for the treatment of T2DM. This randomized, open-label, repeat-dose, two-sequence, cross-over in 13 subjects with T2DM demonstrated the lack of effect of RE on steady state metformin pharmacokinetics. Likewise, metformin did not affect the AUC of RE, remogliflozin or its active metabolite, GSK279782, although C_{max} values were slightly lower for remogliflozin and its metabolite after co-administration with metformin compared with administration of RE alone. This reduction is not thought to be of clinical relevance because peak plasma concentrations exceed the concentration required for inhibition of SGLT2. Metformin did not alter the pharmacodynamic effects (UGE) of RE. Concomitant administration was well tolerated with minimal hypoglycemia, no serious adverse events and no increase in lactic acid.

The GlaxoSmithKline clinical trial study number is KG2105246. The study protocol was registered with the NIH clinical trials data base with identifier NCT00376038.
BACKGROUND

Type 2 diabetes mellitus (T2DM) is a chronic disease characterized by deteriorating glycemic control and an associated risk of complications. Evidence from controlled clinical trials suggests that improving glycemic control can substantially reduce the long-term microvascular complications of diabetes[1-5]. Current guidelines recommend that T2DM patients should be initially managed with diet and exercise followed by pharmacological treatment with metformin as the preferred step 1 agent, unless there are clinical contraindications to metformin use. When glycemic goals are not achieved, the dose of metformin is increased or a second agent is added[6,7]. In this treatment algorithm, suitability for combination with metformin becomes a critical concern for newly developed antidiabetic agents.

Metformin is a dimethylbiguanide that reduces elevated blood glucose levels primarily through its effects on reducing hepatic glucose production and improving peripheral tissue sensitivity to insulin. Metformin is typically administered with meals and has an oral bioavailability of approximately 40 to 60%[8]. It undergoes renal excretion and has a mean plasma elimination half-life between 4.0 and 8.7 hours. There are no clinically relevant metabolic interactions reported with metformin, and it is neither metabolized nor inhibits the metabolism of other drugs[9]. The adverse event of concern with metformin is lactic acidosis, a potentially life-threatening side effect that may be associated with high plasma concentrations of metformin and renal insufficiency[10-12].

The low-affinity, high-capacity sodium-dependent glucose co-transporter-2 (SGLT2), which is expressed specifically in the renal proximal tubule,[13,14] plays a major role in the reabsorption of glucose by the kidney. SGLT2 has recently gained recognition as a potential therapeutic target for reducing hyperglycemia in T2DM, and several selective SGLT2 inhibitors have been synthesized and are being evaluated in the clinic[15-21]. In diabetic animal models, pharmacological inhibition of SGLT2 leads to glucosuria, followed by normalization of plasma glucose levels and consequent improvement in insulin resistance[22-24]. This mechanism may provide improvements in both fasting and postprandial
hyperglycemia without causing weight gain or other dose-limiting side effects observed with other oral antidiabetic approaches[25].

Remogliflozin etabonate is the prodrug of the highly selective and potent SGLT2 inhibitor, remogliflozin. Administration of remogliflozin etabonate has been shown to increase urinary glucose excretion in a dose-dependent manner in mice and rats and to exhibit antidiabetic efficacy in several diabetic rodent models[26]. Remogliflozin is further metabolized to GSK279782. GSK279782 also potently inhibits SGLT2 but circulates at much lower plasma concentrations (approximately 20%) than remogliflozin. Single oral doses of remogliflozin etabonate up to 1000 mg in healthy subjects and repeated dosing in subjects with T2DM (up to 1000 mg BID for 2 weeks) have been safe and well tolerated[27,28]. Remogliflozin etabonate is intended for use in the treatment of T2DM as monotherapy and given its unique mechanism of action, would be a candidate for combination with metformin and other antidiabetic therapies. The osmotic diuresis associated with increased urine glucose excretion provides a potential mechanism for pharmacokinetic drug–drug interactions due to the extensive renal clearance of metformin, although treatment with the diuretic hydrochlorothiazide for 2 weeks had no significant effect on the clearance of metformin in subjects with T2DM[29].

This study was designed to evaluate the effect of remogliflozin etabonate on metformin exposure in T2DM subjects. Secondarily, the effect of metformin on steady state plasma concentrations of remogliflozin etabonate, remogliflozin (active entity) and the active metabolite, GSK279782 was evaluated. Three days of dosing (total of 5 doses) was considered adequate to achieve steady-state conditions for both metformin and remogliflozin. Safety problems that might be related to a pharmacokinetic drug–drug interaction were also monitored.
METHODS

This was a single-center Phase I study conducted at Medica Sur Hospital and Clinical Foundation Pharma Unit (CIF-BIOTEC), Mexico. This study was approved by the investigational center ethics committee (Hospital Medical Sur Ethics Committee) and was conducted in accordance with Good Clinical Practice and the principles of the Declaration of Helsinki. All subjects provided their written informed consent before study participation. The study protocol (KG2105246) was registered with the NIH clinical trials database with identifier NCT00376038.

Subjects

Male and female subjects (post-menopausal women or pre-menopausal women with documented hysterectomy or tubal ligation) with documented T2DM (≥3 months), ranging in age from 30 to 64 years and with a body mass index of 22 to 35 kg/m², were eligible for the study. Enough subjects were to be enrolled to ensure completion of at least 12 evaluable subjects. Pre-study screening included a medical history, physical examination, medical and laboratory evaluations, including 12-lead ECG, and a urinary drug screen. Subjects were required to be free of clinically significant medical and laboratory abnormalities, to have glycosylated hemoglobin (HbA1c) <10%, and fasting plasma glucose (FPG) <280 mg/dL, and to be controlled by diet alone or metformin. Standard exclusion criteria concerning blood donation, alcohol and drug use, caffeine intake and participation in other recent investigational drug studies were applied. In addition, subjects were excluded from participation in the study if they required insulin or had received insulin within the past 3 months, or if they had significant renal disease (as manifested by one or more of the following: creatinine clearance <60 mL/min/1.73 m², urine protein/creatinine ratio >2.5 (mg/mg), or urine albumin concentration ≥300 µg/mg of creatinine).

Study design

The study was a randomized, open-label, repeat-dose, two-sequence, cross-over study in subjects with T2DM who were taking metformin or who were drug naive. Before randomization, eligible subjects were stratified on the basis of their pre-entry treatment...
regimen: metformin or drug naive. Subjects were randomized to receive one of two treatment sequences depicted in Table I. Each treatment sequence included three treatment regimens [A = metformin 500 mg every 12 hours (MET BID), B = remogliflozin etabonate 500 mg every 12 hours (RE BID), and C = metformin 500 mg + remogliflozin etabonate 500 mg every 12 hours (MET+RE)] administered over three 3-day dosing periods that were separated by two non-treatment intervals of variable duration (minimum of 2 days up to a maximum of 15 days). The last dose of drug for each study period was before breakfast on day 3.

Metformin was administered as Glucophage® (BMS) and subjects were allowed to continue taking metformin during the non-treatment interval between the first and second treatment periods. On the evening before each treatment period, subjects were admitted and confined to the clinical site for the duration of the 3-day treatment period. Pharmacokinetic (PK), pharmacodynamic (PD; urine glucose and FPG), and safety (adverse events, vital signs, ECG, clinical laboratory parameters including lactic acid) assessments were performed at check-in and throughout the treatment periods. For each treatment period, the PK sampling day occurred on Day 3.

Subjects were asked to refrain from drinking grapefruit juice or eating grapefruit for at least 3 days before the first dose until collection of the final PK sample for each treatment period. Subjects were to abstain from alcohol or caffeine- or xanthine-containing products from up to 24 hours prior to admission until collection of the final blood/urine sample. Subjects who smoked had to be able to abstain from use of tobacco products for the 12-hour PK sampling interval. On days 1–3 of each treatment regimen, while in-house, subjects were fed breakfast, lunch and dinner as standard meals with identical meals provided on the PK sampling days; breakfast was served at approximately 7am and dinner at approximately 7pm. Subjects were instructed to complete these meals within 30 minutes. Within 15 minutes of completing the meal, the study medications were administered with 240 mL of water per the randomization schedule. Use of the following concomitant medications, assuming a stable dosing regimen over the 3 months before the study were allowed: statins, ACE inhibitors, angiotensin receptor blockers, hydrochlorothiazide (dose of ≤25 mg/day), calcium channel blockers, alpha or beta blockers, thyroid hormone (only if TSH in normal range), hormone replacement therapy, inhaled and intranasal corticosteroids, antidepressants (SSRIs only) and
multivitamins. Low-dose paracetamol (acetaminophen) or ibuprofen (≤1.2 g/day), and any medications prescribed for treatment of adverse events occurring during the study were also allowed. Concomitant medications were not permitted within 4 hours of study drug administration.

Clinical and laboratory monitoring for safety

For each treatment period, subjects were admitted to the clinical facility on the evening of Day -1 to undergo check-in procedures including a physical examination, 12-lead ECG, vital signs, clinical laboratory tests (chemistry, hematology and urinalysis), lactic acid measurement, fasting blood glucose measurement, alcohol screen, drugs of abuse screen and pregnancy test (if applicable). On each study day morning, a fasting blood sugar measurement was determined by glucose monitor. On Days 1 and 2, vital signs and a 12-lead ECG were recorded. Samples for clinical laboratory measure were also taken on Days 1 and 3. Subjects returned to the clinic 7–10 days following the last dosing day for a follow-up physical examination and laboratory evaluation. During the between-treatment intervals, subjects were provided with glucose monitors to measure fasting blood glucose concentrations; subjects were instructed as to how to recognize and treat symptoms of hypoglycemia. Adverse events were monitored throughout the entire study (randomization to follow-up visit). Any adverse events reported during the study were assessed by the investigator for intensity (mild, moderate, severe) and relationship to the study drug (causality). Where possible, all adverse events were followed until stabilization, resolution, or until the event was otherwise explained.

Pharmacokinetic assessment

Blood sampling

Serial blood (two 2 mL samples for metformin and for remogliflozin etabonate and metabolites) were collected pre-dose, 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 4, 6, 8, and 12 hours post-dose for determination of plasma metformin, remogliflozin etabonate (prodrug), remogliflozin (active entity) and GSK279782 (metabolite) concentrations. All sample times are relative to the time of the administration of the first dose of study medication on Day 3 of each period. Blood samples for metformin were collected into tubes containing EDTA and immediately placed on ice and centrifuged at approximately 3000 rpm for 10 minutes at approximately
4 °C. The harvested plasma was separated, frozen and stored at -20 °C or lower until analysis for metformin concentrations. Blood samples for remogliflozin etabonate, remogliflozin and GSK279782 were collected into tubes containing potassium-oxalate/ sodium fluoride, placed on ice and centrifuged at approximately 3000 rpm for 10 minutes at approximately 4 °C. The harvested plasma was frozen at -70 °C until analysis for remogliflozin etabonate, remogliflozin and GSK279782 concentrations.

Drug assay
The concentrations of remogliflozin etabonate, remogliflozin and GSK279782 in deproteinized plasma samples and standards were determined by high-performance liquid chromatography (HPLC) with tandem mass spectrometry (MS/MS) using isotopically labelled internal standards ([\(^7\)H\(^7\)]- remogliflozin etabonate, [\(^7\)H\(^7\)]- remogliflozin and [\(^7\)H\(^7\)]-GSK279782.

Pharmacokinetic calculations
PK analyses of plasma concentration–time data of each analyte (i.e., metformin, remogliflozin etabonate, remogliflozin, and GSK279782) were conducted using the noncompartmental Model 200 (for extravascular administration) of WinNonlin Professional Edition version 4.1 (Pharsight Corporation, Mountain View, CA, USA). Actual elapsed time from dosing was used to estimate all individual plasma PK parameters. Values for the following PK parameters were estimated for each analyte, as appropriate, following administration of 3 days dosing of metformin, remogliflozin etabonate, or both.

- C\(_{\text{max}}\) and t\(_{\text{max}}\) were the actual observed values.
- AUC\(_{(0-12)}\) or AUC\(_{(0-\text{last})}\) was calculated by a combination of linear and logarithmic trapezoidal methods. The linear trapezoidal method was used for all incremental trapezoids arising from increasing concentrations and the logarithmic trapezoidal method was used for those arising from decreasing concentrations.

Pharmacodynamic assessment

Plasma PD
FPG concentrations were collected on Day -1, 1, 2 and 3. Changes in plasma glucose from baseline (Day 1) to Day 2 and 3 were calculated.
Urine PD

Urine glucose concentrations were collected and analysed for the following intervals: 0–4 hours, 4–8 hours, 8–12 hours and 12–24 hours. The quantity of glucose and creatinine excreted in urine was determined by multiplying the urine glucose or creatinine concentration for each time interval by the volume of urine for the corresponding collection interval. The total 24-hour quantity of glucose excreted in urine on Day 2 was calculated by adding the amounts collected during each interval. Urine glucose and creatinine amounts were summarized for each collected interval and for the total 24-hour collection period.

Creatinine clearance (CLcr) was calculated on Day 2 and used to determine the percent of filtered glucose load excreted in urine. By using the urine collections on Day 2, CLcr was calculated as follows:

\[
CLcr = \frac{\text{total amount of urine creatinine 0-xxh interval}/\text{nearest associated serum creatinine}}{
(\text{urine creatinine (mg/xx hours)/serum creatinine (mg/dL)}) \times 100 \text{ mL/dL}} / (\text{xx*60})(\text{minutes/xx hours}),
\]

where urine creatinine (mg/xx hours) is the amount of urine excreted in a xx-hour period.

Urine creatinine was calculated by multiplying the urine creatinine concentration by the urine volume (mL) for a 0-xxh time interval as follows:

\[
\text{urine creatinine (mg/xx hours)} = (\text{urine creatinine concentration (mg/dL)} \times \text{interval volume (mL)/100 (mL/dL))}.
\]

CLcr was reported in mL/minutes on Day 2 for collection intervals 0–4 hours, 4–8 hours, 8–12 hours, 12–24 hours, and the total daily interval of 0–24 hours.

The serum creatinine concentration used for the above calculations was the pre-dose value for the same day as the urine collection or the one closest to the day of urine collection if no serum creatinine was collected on that day.

Percent of Filtered Glucose Excreted in the Urine
Percent of filtered glucose excreted in the urine was estimated for all collection intervals on Day 2 as follows:

\[
\text{Glucose Amount Excreted}/(\text{CLcr} \times \text{PG} \times \text{Time Interval})
\]

or

\[
\frac{\text{Urine glucose (mg/dL)} \times \text{Serum Creatinine (mg/dL)}}{\text{urine creatinine (mg/dL)} \times \text{PG (mg/dL)}}
\]

where glucose amount excreted is the amount of glucose excreted during the xx-hour period, and CLcr is calculated for the xx-hour time interval. PG is the plasma glucose concentration reported closest to the midpoint of the time interval. Because only pre-dose PG was collected in this study, the pre-dose PG on Day 2 was used. Time interval is the number of minutes of urine collection for that interval.

Total fluid intake, urine volume, and fluid balance (intake minus output) were summarized over the 0–24-hour interval of Day 1 and Day 2 and the 0–12-hour interval of Day 3 of each treatment period.

Statistical analysis

The sample size was based on the primary endpoint, metformin AUCs\((0–12)\) under assumption of a within-subject standard deviation of 0.15[30,31]. Using the two one-sided t-test[32] at type I error \(\alpha=0.05\) under a crossover design, 12 subjects should provide at least 90% power to demonstrate lack of an interaction if the ratio of test to reference is truly 1 and the equivalence criteria for the 90% confidence interval (CI) is 0.8–1.25.

Safety and PD parameters were summarized using descriptive statistics. Analyses of steady-state plasma metformin AUC\((0–12)\) and \(C_{\text{max}}\) were conducted with metformin alone as the reference treatment. A mixed effect model with \(\ln(\text{AUC}(0–12))\) as the dependent variable; treatment, period and sequence as fixed effects; and subject-within-sequence as a random effect was used to estimate the treatment difference and its associated 90% CI on the log scale. The PROC MIXED from SAS (Version 8.2, Cary, NC, USA) was used to fit the model.
The estimates and the 90% CI were exponentiated in order to obtain the ratio of geometric means and its CI. The assumptions underlying the model were assessed by visual inspection of residual plots.

Similar analyses were performed for the secondary PK endpoints for remogliflozin etabonate, remogliflozin and its metabolite, with and without metformin. T_{max} was analysed non-parametrically using Hodges–Lehmann method\cite{33,34}.

RESULTS

Thirteen subjects were randomized and completed the study. Of these 13 subjects, 10 subjects were being treated with metformin before study entry and three subjects were drug naive before study entry. The median age was 54 years (range 38 to 62 years); the median BMI was 29 kg/m² (range 22.5 to 34.3 kg/m²). All subjects were Hispanic or Latino.

Pharmacokinetics

The summary data of PK parameters for metformin, remogliflozin etabonate, remogliflozin and GSK279782 are presented in Table II. The primary PK objective was to demonstrate a lack of effect of remogliflozin etabonate on the PK parameters of metformin. Results from the primary comparison, are summarized in Table III. There was no effect of remogliflozin etabonate on metformin PK parameters.

One of the secondary objectives included a comparison of PK parameters for remogliflozin etabonate, remogliflozin and GSK279782 after treatment with remogliflozin etabonate alone and with MET + RE. A summary of these results is presented in Table IV. There were no effects of metformin on the AUC of remogliflozin etabonate, remogliflozin and its metabolite. However, C_{max} was lower with the combination. For C_{max}, on average, there was a decrease of 21% in remogliflozin and a decrease of 22% in GSK279782 with MET + RE compared to remogliflozin etabonate alone. The 90% CI indicates that the true difference lies between a decrease of 40% and an increase of 5% for remogliflozin and between a decrease of 33% and 9% for GSK279782.
Pharmacodynamics

Fasting plasma glucose

A summary of the FPG concentration data by treatment period and study day is presented in Figure 1. When the changes in fasting plasma glucose concentrations from baseline (predose on Day 1) to Day 2 and Day 3 were considered for the three treatment periods, it appeared that the fasting glucose concentrations remained relatively stable during the MET BID period, whereas small decreases in glucose concentrations were observed during both the RE BID and MET + RE BID treatment periods.

Urinary glucose excretion and percent of filtered glucose excreted

Mean cumulative 24-hour urinary glucose excretion was approximately 500 mmol following treatment with RE BID or MET + RE BID (Day 2), whereas MET BID had relatively no effect on urine glucose output. The effect of remogliflozin etabonate on urine glucose excretion was not diminished by co-administration with metformin. The greatest increase in urine glucose excretion was evident within the first 4 hours of dosing following both remogliflozin etabonate regimens. The 24-hour creatinine clearance on Day 2 was comparable across the three treatment periods and was approximately 110 mL/min. During the RE BID and MET + RE BID periods, mean and median values for the percent of filtered glucose excreted in the urine ranged from 43% up to 68% over the intervals collected with a mean of approximately 50% for the combined 24 hour collection for both remogliflozin etabonate containing regimens compared to 1.4% with metformin alone.

Fluid balance

Total fluid intake, total urine volume, and fluid balance data for the 24-hour collection intervals on Days 1 and 2 and the initial 12-hour collection interval on Day 3 were compared by treatment. On Days 1 and 2, mean total 24-hour fluid intake ranged from approximately 2500 mL to 3000 mL across the three treatment periods. During the 12-hour collection period on Day 3, mean fluid intake ranged from approximately 1800 to 2200 mL for any one treatment period. Because fluid intake was less than total urine volume throughout all treatment periods, mean fluid balance values were considered negative during most intervals. On Day 1, fluid balance (median, range) appeared more negative on RE BID (-1145 mL, -1630 to +335 mL)
and MET + RE BID (-1200 mL, -2395 to -90 mL) compared to MET BID (-775 mL, -2280 to +400 mL). Fluid balance neutrality seemed to be reached on Day 3 for all drug regimens.

Safety and tolerability

There were no serious adverse events reported. The only adverse event considered related to study drug was hypoglycemic symptoms reported by 2 subjects, one event with metformin alone and one with MET + RE. Symptoms were not confirmed by findings of low plasma glucose concentrations. Back pain and headache were the only events reported by more than one subject during any treatment period (reported during MET BID by 2 different subjects). All adverse events are summarized in Table V.

No clinically significant changes in laboratory parameters or vital signs were reported for any treatment regimen. As an increased exposure to metformin can result in lactic acidosis, lactic acid was collected. No increase in lactic acid was observed (Figure 2).

DISCUSSION

Despite the availability of multiple classes and combinations of antihyperglycemic agents, the clinical management of T2DM is currently suboptimal, with the majority of patients failing to achieve and maintain target glycemic levels in practice[35]. Consequently, there is a continued need for novel therapeutic approaches, particularly those with complementary modes of action that will enable further improvement of glycemic control.

Remogliflozin etabonate, by inhibiting glucose reabsorption, offers a potential treatment for T2DM as monotherapy and in combination with existing therapies. Remogliflozin etabonate is being developed for use for the treatment of T2DM as monotherapy, and in combination with existing therapies including metformin. In this study, no effect of remogliflozin etabonate on metformin PK parameters was observed. The findings from this study are consistent with a lack of an effect by remogliflozin etabonate on the renal clearance of metformin.
This study was not adequately powered to test the effect of metformin on the remogliflozin etabonate PK parameters. Metformin did not appear to affect the AUC of remogliflozin etabonate, remogliflozin and its metabolite; however, C_{max} was lower after the co-administration of remogliflozin etabonate and metformin than with remogliflozin etabonate alone. The reduction is not clinically relevant because the plasma concentration of the active entity at C_{max} considerably exceeds the concentration required for full inhibition of the transporter.

As expected on the basis of its pharmacological properties, the administration of remogliflozin etabonate with or without metformin greatly increased urine glucose excretion and the percent of filtered glucose excreted in the urine. The evidence of pharmacological effect was seen within the first 4 hours of dosing with remogliflozin etabonate and sustained while on treatment. Co-administration of metformin with remogliflozin etabonate did not diminish the glucosuric effect of remogliflozin etabonate.

Concomitant administration of remogliflozin etabonate with metformin for 3 days was well tolerated in subjects with T2DM. Hypoglycemia was the only adverse event that was considered related to study drug (which occurred with metformin alone as well as with the combination); although neither case was confirmed with plasma glucose concentrations. Antidiabetic treatments that increase urine glucose may increase risk of urinary tract infections (UTIs), however, no documented UTIs were observed over the limited time of remogliflozin etabonate treatment in this study. Mean lactate concentrations showed an increase or increasing trend during the three day MET BID treatment period. In contrast, the mean lactate concentrations decreased during RE BID and MET+RE BID periods. Potential mechanisms to explain the decreased lactate concentrations include reduced glucose concentrations with less production from glycolysis, enhanced extraction of lactic acid by the liver for gluconeogenesis or increased clearance of lactic acid by the kidney. No symptoms suggestive of lactic acidosis occurred during the study.
In summary, the findings of this study do not indicate a safety concern when multiple oral doses of remogliflozin etabonate 500 mg are administered with metformin 500 mg BID in the intended patient population. Because remogliflozin etabonate does not affect the PK profile of metformin, there is a low risk for adverse events resulting from a PK drug interaction and increased exposure. Likewise, although administration with metformin resulted in a 21% reduction in C_{max}, which was not considered clinically significant, the PD properties of remogliflozin etabonate were not altered. In fact, there was an indication that remogliflozin etabonate alone improves plasma blood glucose by increasing the excretion of urine glucose, and this effect by remogliflozin etabonate was not impaired by the co-administration of metformin. Future studies in a larger patient population are warranted to definitively test the safety and efficacy of remogliflozin etabonate in combination with metformin in patients with T2DM who have not achieved the desired glycemic target.

Acknowledgements and funding:
Editorial assistance in the preparation of this manuscript was provided by Katie Green, International Medical Press, funded by GlaxoSmithKline

Competing interests:
At the time of study, EKH, AK, ROCS, WT, BR, JWP, CJ and RLD are employees of GlaxoSmithKline

Author contributions:

EKH, AK, ROCS, WT, BR, JWP, CJ and RLD participated in the design of the study, its coordination and performed the statistical analysis. JP and ER contributed to recruitment and conduct of the study. All authors have been involved in critically revising the drafts of the manuscript and read and approved the final manuscript.

Figure Legends

Figure 1. Fasting Plasma Glucose Concentration (FPG; mmol/L) – Change from Baseline (Day 1). MET BID, metformin 500 mg every 12 hours; RE BID, remogliflozin etabonate 500 mg every 12 hours; MET +RE BID, metformin 500 mg + remogliflozin etabonate 500 mg every 12 hours.

Figure 2. Lactic Acid Concentration by Treatment (normal range of 0.5 to 2.2 mmol/L). MET BID, metformin 500 mg every 12 hours; RE BID, remogliflozin etabonate 500 mg every 12 hours; MET +RE BID, metformin 500 mg + remogliflozin etabonate 500 mg every 12 hours.
Tables

Table I Treatment Sequence Regimens

<table>
<thead>
<tr>
<th>Treatment Sequence</th>
<th>Period 1</th>
<th>Interval between dosing</th>
<th>Period 2</th>
<th>Interval between dosing</th>
<th>Period 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>3 Days 2 to 15 days</td>
<td>C</td>
<td>3 days 2 to 15 days</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>3 Days Continue metformin only</td>
<td>A</td>
<td>3 days Stop all trial medications</td>
<td>B</td>
</tr>
</tbody>
</table>

Treatment A (MET BID): Metformin IR 500 mg every 12 hours. Treatment B (RE BID): Remogliflozin etabonate 500 mg every 12 hours. Treatment C (MET+RE BID): Metformin IR 500 mg every 12 hours + remogliflozin etabonate 500 mg every 12 hours. Metformin was administered starting from the morning of Day 1 of Period 1 and stopped after the morning dose on Day 3 of Period 2. For any Treatment Period when remogliflozin etabonate was administered, remogliflozin etabonate dosing was stopped after the morning dose is given on Day 3.
Table II Summary of Plasma Metformin, Remogliflozin Etabonate, Remogliflozin, and GSK279782 PK Parameters

<table>
<thead>
<tr>
<th>Metformin PK Parameter</th>
<th>MET BID N=13</th>
<th>MET + RE BID N=13</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC_{(0-12)} (h.ng/mL)</td>
<td>7141.3 (24)</td>
<td>7520.8 (27)</td>
</tr>
<tr>
<td>C_{max} (ng/mL)</td>
<td>1018.2 (26)</td>
<td>1025.3 (25)</td>
</tr>
<tr>
<td>t_{max} (h)</td>
<td>4.0 (1.0 - 6.0)</td>
<td>4.0 (1.0-6.0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Remogliflozin etabonate (prodrug) PK Parameter</th>
<th>RE BID N=12-13(^a)</th>
<th>MET + RE BID N=12-13(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC_{(0-last)} (h.ng/mL)</td>
<td>98.9 (69)</td>
<td>102.1 (49)</td>
</tr>
<tr>
<td>C_{max} (ng/mL)</td>
<td>79.5 (107)</td>
<td>67.7 (77)</td>
</tr>
<tr>
<td>t_{max} (h)</td>
<td>3.0 (1.0-4.0)</td>
<td>3.0 (1.0-6.0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Remogliflozin (active entity) PK Parameter</th>
<th>RE BID N=13</th>
<th>MET + RE BID N=13</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC_{(0-12)} (h.ng/mL)</td>
<td>6814.3 (33)</td>
<td>6425.9 (33)</td>
</tr>
<tr>
<td>C_{max} (ng/mL)</td>
<td>2688.6 (52)</td>
<td>2124.6 (63)</td>
</tr>
<tr>
<td>t_{max} (h)</td>
<td>3.0 (1.0-4.0)</td>
<td>3.0 (1.0-6.0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GSK279782 (active metabolite) PK Parameter</th>
<th>RE BID N=13</th>
<th>MET + RE BID N=13</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC_{(0-12)} (h.ng/mL)</td>
<td>1527.9 (37)</td>
<td>1472.9 (36)</td>
</tr>
<tr>
<td>C_{max} (ng/mL)</td>
<td>462.8 (39)</td>
<td>361.9 (38)</td>
</tr>
<tr>
<td>t_{max} (h)</td>
<td>4.0 (1.0-4.0)</td>
<td>4.0 (1.0-8.0)</td>
</tr>
</tbody>
</table>

Values are geometric mean (%CV) for each parameter, except for t_{max} which is median (range). PK, pharmacokinetic; MET BID, metformin 500 mg every 12 hours; MET + RE BID, metformin 500 mg + remogliflozin etabonate 500 mg every 12 hours; RE BID, remogliflozin etabonate 500 mg every 12 hours

\(^a\) AUC not evaluable for one subject.
Table III Primary Comparison: PK Parameters of Metformin With and Without Remogliflozin Etabonate

<table>
<thead>
<tr>
<th>Compound</th>
<th>PK Parameter</th>
<th>Treatment Comparison</th>
<th>Point Estimate (GLSM Ratio)</th>
<th>90% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metformin</td>
<td>AUC(0-12)</td>
<td>MET+RE / MET</td>
<td>1.05</td>
<td>(0.98, 1.12)</td>
</tr>
<tr>
<td></td>
<td>C_max</td>
<td>MET+RE / MET</td>
<td>1.01</td>
<td>(0.92, 1.10)</td>
</tr>
</tbody>
</table>

MET + RE, metformin 500 mg + remogliflozin etabonate 500 mg every 12 hours
<table>
<thead>
<tr>
<th>Compound</th>
<th>PK Parameter</th>
<th>Treatment Comparison</th>
<th>Point Estimate (GLSM Ratio)</th>
<th>90% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remogliflozin etabonate (prodrug)</td>
<td>AUC_{(0-last)}</td>
<td>MET+RE / RE</td>
<td>1.00</td>
<td>(0.77, 1.29)</td>
</tr>
<tr>
<td></td>
<td>C_{max}</td>
<td>MET+RE / RE</td>
<td>0.85</td>
<td>(0.54, 1.35)</td>
</tr>
<tr>
<td>Remogliflozin (active entity)</td>
<td>AUC_{(0-12)}</td>
<td>MET+RE / RE</td>
<td>0.94</td>
<td>(0.86, 1.04)</td>
</tr>
<tr>
<td></td>
<td>C_{max}</td>
<td>MET+RE / RE</td>
<td>0.79</td>
<td>(0.60, 1.05)</td>
</tr>
<tr>
<td>GSK279782 (active metabolite)</td>
<td>AUC_{(0-12)}</td>
<td>MET+RE / RE</td>
<td>0.96</td>
<td>(0.92, 1.01)</td>
</tr>
<tr>
<td></td>
<td>C_{max}</td>
<td>MET+RE / RE</td>
<td>0.78</td>
<td>(0.67, 0.91)</td>
</tr>
</tbody>
</table>

MET + RE, metformin 500 mg + remogliflozin etabonate 500 mg every 12 hours
<table>
<thead>
<tr>
<th>Preferred Term</th>
<th>MET BID N = 13</th>
<th>RE BID N = 13</th>
<th>MET+RE BID N = 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any Event</td>
<td>5 (38%)</td>
<td>2 (15%)</td>
<td>7 (54%)</td>
</tr>
<tr>
<td>Headache</td>
<td>2 (15%)</td>
<td>0</td>
<td>1 (8%)</td>
</tr>
<tr>
<td>Back pain</td>
<td>2 (15%)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Muscle spasms</td>
<td>1 (8%)</td>
<td>1 (8%)</td>
<td>0</td>
</tr>
<tr>
<td>Hypoglycemia</td>
<td>1 (8%)</td>
<td>0</td>
<td>1 (8%)</td>
</tr>
<tr>
<td>Neck pain</td>
<td>1 (8%)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Osteoarthritis</td>
<td>0</td>
<td>0</td>
<td>1 (8%)</td>
</tr>
<tr>
<td>Abdominal pain upper</td>
<td>0</td>
<td>1 (8%)</td>
<td>0</td>
</tr>
<tr>
<td>Dyspepsia</td>
<td>0</td>
<td>0</td>
<td>1 (8%)</td>
</tr>
<tr>
<td>Toothache</td>
<td>1 (8%)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dizziness</td>
<td>1 (8%)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fatigue</td>
<td>1 (8%)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nasopharyngitis</td>
<td>0</td>
<td>0</td>
<td>1 (8%)</td>
</tr>
<tr>
<td>Wound</td>
<td>0</td>
<td>0</td>
<td>1 (8%)</td>
</tr>
<tr>
<td>Rash</td>
<td>0</td>
<td>0</td>
<td>1 (8%)</td>
</tr>
</tbody>
</table>