Author's response to reviews

Title: Genetic and bioinformatic analyses of the expression and function of PI3K regulatory subunit PIK3R3 in an Asian patient gastric cancer library

Authors:

Jin Zhou (jin.zhou@duke-nus.edu.sg)
Geng B Chen (gengbo.chen@duke-nus.edu.sg)
Yew C Tang (yewchung.tang@duke-nus.edu.sg)
Yonghui Wu (yonghui.wu@duke-nus.edu.sg)
Chui S Yap (chuisun.yap@duke-nus.edu.sg)
Guihua Wang (ghw1118@hotmail.com)
Junbo Hu (jbhu@tjh.tjmu.edu.cn)
Xianmin Xia (xianminxia@hotmail.com)
Patrick Tan (gmstanp@duke-nus.edu.sg)
Liang K Goh (liang.goh@duke-nus.edu.sg)
Paul M Yen (paul.yen@duke-nus.edu.sg)

Version: 3 Date: 20 June 2012

Author's response to reviews:

Editor's Comment:

Authors of this manuscript addressed all the concerns of the two reviewers who both recommended to accept this manuscript. However, it is widely accepted that at least 2 siRNAs are required to reach any conclusions because of possible off-target effects. Neither reviewer raised this issue.

It would be more rigorous if the authors would find another siRNA to knockdown PIK3R3 and repeat at least the experiments of Figure 2B-E. New data from these experiments can be organized as a supplementary figure. I apologize that I did not point this out during the initial review process.

Answer: Thank you for this suggestion. We ordered another PIK3R3 siRNA from Invitrogen and repeated the experiments of figure 2B-E using the new siRNA. PIK3R3 knockdown decreased HGC27 cell proliferation when measured by both crystal violet staining and BrdU incorporation assay. Additionally, PIK3R3 knockdown did not cause any increase in the early apoptotic cell population. These results are similar to our previous findings using Santa Cruz PIK3R3 siRNA, and confirm that the inhibitory effect on cell growth after PIK3R3 knockdown was not an off-target effect of the siRNA. These new data are shown in new Supplemental Figure 2.