Author’s response to reviews

Title: Acute renal failure in an AIDS patient on tenofovir

Authors:

Pinelopi P. Kapitsinou (kapitsinou@yahoo.com)

Version: 2 Date: 27 June 2007

Author's response to reviews: see over
Acute renal failure in an AIDS patient on tenofovir: a case report.

Pinelopi P. Kapitsinou, MD¹ and Naheed Ansari, MD²

From the ¹Department of Medicine, Jacobi Medical Center and ²Division of Nephrology, Department of Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, New York.

Correspondence to: Dr. Naheed Ansari, Division of Nephrology, Department of Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, 1400 Pelham Parkway South, Bronx, NY 10461. Phone: 718-918-5503; Fax: 718-918-8364, Email: Naheed.Ansari@nbhn.net

Word count: 1373
ABSTRACT

Tenofovir is a potent nucleotide analogue reverse-transcriptase inhibitor used with other antiretroviral agents for the treatment of human immunodeficiency virus (HIV) infection. Despite the absence of renal toxicity observed in the major clinical trials of tenofovir, several case reports of acute renal failure (ARF) and proximal tubule dysfunction have been described. We report another patient who developed ARF and Fanconi syndrome during treatment with tenofovir. Despite the severe metabolic acidosis associated with a creatinine of 9.8 mg/dL (866 µmol/L), patient’s condition improved on discontinuation of tenofovir treatment without requiring renal replacement therapy.

Abstract word count: 92
Tenofovir is a nucleotide reverse-transcriptase inhibitor which was approved for use by the Food and Drug Administration in 2001 for the treatment of HIV. It belongs to the same class as adefovir and cidofovir which have well documented renal toxicities including proximal renal tubule cell dysfunction and acute renal failure (ARF) [1,2]. The described mechanism of tubular toxicity for the latter two drugs is cellular accumulation through increased entry from the hOAT (organic anion transporters located on the basolateral side of tubule) and decreased efflux into tubular lumen mediated by the MRP 2 (Multidrug-Resistance-Protein) [3]. Similar effects were not expected with tenofovir due to decreased interaction with human organic transporter 1 and minimal mitochondrial toxicity in vitro [2,3].

Twenty seven cases of tenofovir related tubular dysfunction and Fanconi syndrome have been described in the medical literature. We now describe another case of a patient in whom ARF and Fanconi syndrome developed during treatment with tenofovir.

CASE REPORT

A 53-year-old woman with AIDS of 6 years’ duration developed progressive weakness, dyspnea on exertion and constipation. Her complaints also included decreased apetite, weight loss and episodes of lightheadness. She had a history of drug and alcohol addiction, seizure disorder, stroke, pancreatitis, chronic low back pain and she was known to be Hepatitis B and C positive since 2002. Antiretroviral therapy - consisted of abacavir, lamivudine and zidovudin, had been started in March 2002. Eighteen months later (October 2003), her HAART regimen was switched to tenofovir (300 mg/d), sustiva (600 mg/d) and Epivir (300mg/d). At that time, her creatinine was 0.8 mg/dL (71µmol/L). A recheck in December 2005 revealed a creatinine of 0.9 mg/dl (80µmol/L) corresponding to eGFR 75 ml/min. She had been
on this regimen until she presented to hospital. Her other medications included aspirin
81 mg/d, folic acid and hydroxyzine. She was also started on trimethoprim-
sulfamethoxizole but discontinued this herself in April 2006.

On admission, clinical examination disclosed signs of mild dehydration. Laboratory tests revealed the following concentrations: Sodium, 134 mEq/L; potassium, 3.4 mEq/L; chloride, 115 mEq/L; bicarbonate, 8 mEq/L; BUN, 57 mg/dL (20mmol/L); creatinine, 9.8 mg/dL (866 mmol/L); phosphorous, 5.7 mg/dL (1.8 mmol/L); CPK, 119U/L; uric acid, mg/dL; lactate, 0.63 mmol/L and albumin 3.8 g/dL (38 g/L). Arterial blood gas showed academia (pH: 7.15) with appropriate respiratory response (pCO2 21mmHg). In a urine sample, sodium was 44 mEq/L with a FeNa of 4%, potassium 39 mEq/L, chloride 43 mEq/L and creatinine 82 mg/dL (7249mmol/L). Urinalysis showed marked glucosuria (294 mg/dL) with normoglycemia, proteinuria (124 mg/dL), absence of urinary sediments, haematuria, bacteriuria or eosinophilia. Urine pH was 6.0. The rate of fractional excretion of phosphorus and uric acid were 58% and 37% respectively. The findings of renal ultrasound were normal, as were the findings for all serologic tests. Her CD4+
lymphocyte count was 241 and her viral load 460 HIV RNA copies/ml.

Tenofovir therapy was discontinued and her HIV regimen was adjusted to abacavir, sustiva and epivir. Intravenous bicarbonate therapy was initiated with simultaneous potassium supplementation. Within the next few days, there was slow improvement in serum creatinine and bicarbonate levels but hypokalemia (minimum 2.5 mEq/L) recurred, requiring discontinuation of bicarbonate level. Five days after her admission to our hospital, patient discharged herself against medical advice. At that time she still had hypokalemia (2.7 mEq/L), low bicarbonate level (16 mEq/L) and a creatinine of 6.1 mg/dl (539 mmol/L).
In short-term clinical trials, tenofovir did not exhibit more frequent nephrotoxicity compared to placebo [4]. Recently, however, several case reports documenting nephrotoxicity have been described in the literature [5-8]. A number of different manifestations of kidney disease have been reported with tenofovir, including ARF, rhabdomyolysis, Fanconi syndrome and diabetes insipidus [6].

Many AIDS patients develop acute or chronic diarrheal syndromes with associated non-anion gap metabolic acidosis from bicarbonate loss in the stool. However, our patient did not report any episodes of diarrhea. Exposure to trimethoprim-sulfamethoxazole can induce acute interstitial nephritis. High-dose trimethoprim-sulfamethoxazole has been associated with unexplained RTA in a series of patients. The discontinuation of trimethoprim-sulfamethoxazole three months prior to presentation makes both scenarios in our case unlikely. Type B lactic acidosis resulting from mitochondrial dysfunction is well described for nucleoside reverse transcriptase inhibitors. No hyperlactemia was found in this patient. Other potential causes of severe metabolic acidosis were not identified. The constellation of ARF and Fanconi syndrome and the close temporal relationship between discontinuation of tenofovir and improvement of renal function suggest that tenofovir induced nephrotoxicity was the most likely diagnosis. The creatinine of 9.8 mg/dL (866 mmol/L) and bicarbonate of 8 mEq/L are the highest and lowest respectively reported in the literature among the non-hemodialysis requiring cases of ARF secondary to tenofovir. The first case of hemodialysis requiring ARF secondary to tenofovir was that of a 40 year-old HIV man who presented with oliguria, academia (pH 7.10, HCO3 6 mEq/L), lactate 7 mmol/L and creatinine of 20 mg/dL (1768 mmol/L)[7]. However, this patient was also receiving metformin, which could
be implicated particularly in the setting of high lactate levels. Additionally, tenofovir has been more associated with polyuria secondary to induction of Fanconi syndrome. The second case of hemodialysis in ARF induced by tenofovir was a 65 year-old-man with diabetes and AIDS who was admitted with creatinine, 7.1 mg/dL (628mmol/L, GFR 6.8 ml/min), blood urea nitrogen, 68 mg/dL (24mmol/L) and bicarbonate, 10 mEq/L [7]. This patient received two hemodialysis treatments for azotemia. Expecting fast recovery after discontinuation of tenofovir treatment, we did not dialyse our patient, as she was asymptomatic.

In a recent review, Zimmermann et al. analyzed the findings for the 27 patients described in the literature with tenofovir-associated ARF since December 2002 [8]. The mean age was 45.5 years, with a ratio of men to women 3.5:1. The mean duration of tenofovir treatment was 11 months (range, 1-29 months). Our patient was taking tenofovir for 32 months which is to our knowledge the latest presentation of tenofovir- induced ARF.

There are no known predictors of which patients would develop ARF associated with tenofovir. There was no correlation of CD4 cell count and plasma HIV load with the development of ARF [8]. However, low baseline GFR may contribute to tenofovir’s toxicity via increase in the serum concentration [8].

Similarly, not predictors for occurrence of Fanconi syndrome exist. A recent study identified genetic variants of hOAT1 and investigated potential effects on the functional properties of this transporter. Kinetic analysis indicated that the transport affinity for the nucleoside phosphonate analogs adefovir, cidofovir, and tenofovir seemed to be decreased in the R50H-hOAT1 variant compared with the wild type. This study raises the genetic variation in hOAT1 as potential explanation of “different handling” of these drugs with the associated clinical implications [9].
Tenofivir is primarily excreted by the kidneys. Elimination is accomplished by glomerular filtration as well as by active tubular secretion. There are several medications that compete for renal tubular secretion, including acyclovir, cidofovir, valacyclovir, ganciclovir and valganciclovir. Coadministration may lead to increased serum levels of tenofovir. Additionally, tenofovir causes CYP1A2 inhibition, and drug levels may be increased when given with other antiretroviral medication. Administration of ritonavir alone or with lopinavir has been shown to increase the maximum serum concentrations of tenofovir by 30%, while didanosine and atazanavir also have been described to have potential interactions with tenofovir [10]. Notably, our patient was not receiving tenofovir concurrently with any of the above listed medications.

Until recently, no long-term renal impairment was expected as a consequence of tenofovir-related nephrotoxicity. However the incomplete recovery of kidney function in 5 out of 27 reported cases after a mean duration of follow-up of 7.5 months raises serious concerns for occurrence of chronic kidney disease after discontinuation of tenofovir [8].

A follow-up of serum creatinine, urinalysis and electrolytes should be performed in patients taking this medication. Early diagnosis is important so that tenofovir can be discontinued in a timely manner and life-threatening electrolyte imbalances can be minimized. Hemodialysis will not be necessary in the majority of cases, given the rapid resolution of ARF with the discontinuation of tenofovir. Physicians should continue to be vigilant in screening patients well after initiation of tenofovir due to possible late appearance of renal failure. In case of ARF occurrence, persistence of kidney damage should be considered as a possibility so that early optimization of coexistent risk factors can be attempted.
Conclusions

We describe the case of a patient in whom ARF and Fanconi syndrome developed during treatment with tenofovir. Vigilant screening of kidney function is required after initiation of tenofovir due to possible late appearance of renal failure.

Authors' contributions

PK has been involved in the conception, design, drafting, and revising the manuscript. NA has been involved in the diagnosis and treatment of the patient and revising the manuscript.

Acknowledgements

Written informed consent was obtained from patient for publication of study.

Competing interests.

The authors declare that they have no conflicting interests.
REFERENCES


