Author's response to reviews

Title: Physician attitude toward depression care interventions: implications for implementation of quality improvement initiatives

Authors:

Rachel EM Henke (rhenke@post.harvard.edu)
Ann F Chou (ann-chou@ouhsc.edu)
Johann C Chanin (chanin@ncqa.org)
Amanda B Zides (aberke23@aol.com)
Sarah H Scholle (scholle@ncqa.org)

Version: 3 Date: 1 July 2008

Author's response to reviews: see over
RE: Physician attitude toward depression care interventions: implications for implementation of quality improvement initiatives (#4083912251787696)

Dear Dr. Mittman,

We are delighted that our revised manuscript entitled “Physician attitude toward depression care interventions: implications for implementation of quality improvement initiatives” has been accepted for publication in Implementation Science pending minor changes. We agree that further clarifying the methods section will strengthen its credibility to readers as well as improve the transparency of the analysis. The reviewers’ comments (numbered and in italics) and our responses are below.

Reviewer 1’s comments:

(1) I am unclear first about how the coders assigned codes; the authors should clarify what they did. Here are the possibilities:
- Some member(s) of the team pre-determined what the quotations would be (literally, where they would stop and start) and then the two coders independently coded the same quotations.
- Each coder created quotations and assigned codes as they believed appropriate based on their understanding of the narrative; as such, one coder’s codes will not map exactly on to the others (i.e., they will differ in terms of where they stop and start). Please note, his is not necessarily a problem and can be resolved through discussion.

We agree with the reviewer’s suggestion to add more detail about our coding process to the manuscript. We took the second approach described by the reviewer and allowed each coder to identify quotations in the length that conveyed meaning and assign codes based on their understanding of the narrative. The identified quotations did differ in
length; inconsistencies were discussed and resolved by the coders. We added this additional description to the manuscript:

“The coder identified quotations based on her understanding of the dialogue rather than coding pre-determined chunks of the transcripts.”

(2) I am unclear of the basis for determining where a quotation should stop and start. Such bases include:
- Constructing quotes so include a full idea even if it is only part of one turn in a conversation or crosses several turns
- Constructing quotes using some arbitrarily predetermined guidelines (e.g. a full response to a question, one turn in the conversation, a sentence, etc.).
Classically, people use meaning to determine where a quote starts and stops, as the goal is to understand the informants. So quotes can be anywhere from one word long to several paragraphs. Also, as coders compare their work, they may alter the limits of a quotation to convey the informant’s meaning most precisely. The authors should clarify what they did.

We used meaning to determine where a quote starts and stops. The length of the quotations varied accordingly. Based on the reviewers’ suggestions, we provided additional detail about our data analysis techniques in the methods section.

(3) The authors write that they compared results to ensure reliability. The authors need to clarify what they mean by “compared results”. There are several methods for doing this. Classically, two coders review each other’s work and then discuss and resolve differences regarding what codes they assign to a particular quotation. Additionally, if the coders created their own quotations based on meaning (versus some arbitrary criteria as above), coders also discuss and resolve differences regarding what the limits of a quotation should be so that it expresses a full idea. They then utilize a coded transcript that reflects all of this discussion.

Our process of comparing results consisted of meeting after independently coding the transcripts to review what codes we used and the quotations associated with each code. In the case that one team member used a code that the other had not used, the code and attached quotation(s) were reviewed and the team members reached consensus on whether to include it or not and what the title of the code should be. In the case that the team members chose different codes for quotations, discussion led to agreement on which to use. If one of the team members coded a quotation and the other had not, the team member described why she used the specific code and the two reached consensus on whether or not to keep it. The team members did not discuss minor differences in the limits of the quotations. The limits chosen by the team member who used Atlas were used by default. Substantial differences in the limits of the quotations were discussed and resolved. We paraphrased this information in the text:
“To enhance reliability, a second team member independently coded a subset of the transcripts manually, also identifying quotations based on meaning. This team member highlighted quotations and assigned codes in the margins. The two team members met to compare results. When the team members identified unique quotations or differed on choice of code, they discussed inconsistencies and reached consensus on which coding scheme to use.”

(4) When thinking about how they describe their data analysis methods the authors should note: Using two coders improves one type of reliability problem but creates another. When coders check each other’s work they increase the probability that coders apply a construct consistently across the data set (i.e., do not drift in their understanding over time). On the other hand, as it is impossible for two people to think exactly alike, the introduction of a second coder automatically introduces a measure of unreliability. Despite the introduction of a second reliability problem, the advantages of having a second coder may outweigh its disadvantages. Not only can a second coder help with drift but together two coders are also likely to achieve a deeper understanding of the data than one alone could. Qualitative data is often ambiguous and thus two heads are usually better than one in helping to resolve such ambiguity.

The reviewer presents an important discussion. We add the following text to our limitation section:

“Our use of two coders enhanced the reliability of this study by increasing the likelihood that we applied constructs consistently. It also allowed us to generate a deeper understanding of the data. These advantages likely outweigh the additional measure of unreliability introduced by using a second coder.”

(5) Finally, I find it a bit odd that one investigator coded using Atlas and the other did not. Atlas is just a tool that eases the ability to refine coding and retrieve quotations. It is certainly not necessary to use and I do not think acceptance of the article should hinge on this matter. The authors should explain what the manual coder did (e.g., wrote in the margins) and how the two coders worked together as they used different mediums.

We apologize for the lack of clarity. The team member who coded manually did not have access to Atlas. This coder highlighted portions of the test and wrote codes and any other relevant notes in the margin. The Atlas coder printed out the interview transcripts with the assigned codes in the margins. They were thus able to compare transcripts on a line by line basis. We modify the text to clarify.

We are grateful for the reviewer’s thoughtful comments and suggestions about how to improve the methods section. We hope our responses are clear and that our revisions are acceptable. We look forward to publication.
Sincerely,

Rachel Mosher Henke
Ann F. Chou
Johann C. Chanin
Amanda B. Zides
Sarah Hudson Scholle