Author's response to reviews

Title: Cost-effectiveness analysis of timely dialysis referral after renal transplant failure in Spain

Authors:

Guillermo Villa (guillermo@baphealth.com)
Emilio Sánchez-Álvarez (emilio@baphealth.com)
Jesús Cuervo (jesus@baphealth.com)
Lucía Fernández-Ortiz (lucia@baphealth.com)
Pablo Rebollo (pablo@baphealth.com)
Francisco Ortega (fortega@hca.es)

Version: 8 Date: 13 July 2012

Author's response to reviews: see over
Dear Editor:

I would like to thank the reviewers and you for your valued contributions to improve our manuscript.

Please, find attached our response to the reviewers’ comments.

Should you require further information, please, do not hesitate to contact us.

Best regards,

Guillermo Villa

Reviewer 1’s comments

The authors have revised their manuscript addressing all major points raised in my original comments.

Thank you very much for your valued contributions to this manuscript!

Reviewer 2’s comments

Minor Essential Revisions

1. Regarding my first and second comments (2nd Reviewer) about the variability in results (costs and outcomes), I am convinced that there might be a reason that will explain your variability. I don’t think you can justify this variability saying that you “strongly believe”…the assumption of the 10% always adds uncertainty into the model, but not really that much to generate this dispersion in results. Check all the
parameters you are using in the model, and make sure you suggest or
point and explanation in the paper!
As requested by Reviewer 2, we have thoroughly revised every single
parameter’s Monte Carlo simulation results and have found no bugs. The
overall assumption of dispersion of 10% (of the mean value) translates into a
dispersion of 8.14% (total costs vector for Scenario L), 8.48% (total costs
vector for Scenario T), 7.24% (total QALY vector for Scenario L) and 7.68%
(total QALY vector for Scenario T). These results seem plausible, so we
think the joint dispersion of the incremental costs and outcomes should be
that observed in Figure 3.
Note that the x-axis scale can be a little tricky in Figure 3. In our case (per-
patient and year figures), the ∆QALY-axis ranges theoretically between -1
and 1, and we were just considering the interval -0.08 to 0.08, making small
differences to look bigger. We now consider the interval -0.30 to 0.30.
Nevertheless, dispersion is surely overestimated in our model due to the
10% assumption and that constitutes a significant limitation of this research,
as we acknowledge in the manuscript.

2. I will strongly recommend that monetary values expressed in Euros
have the sign € after the number;
Done (body of the manuscript, tables and figures)!

3. In Table 2, the 95% CI lower and upper bounds could be placed next to
the mean, in brackets, to shorten the table and probably will look
clearer:
i.e. Per-patient annual cost (Euros)
Mean 4,591 (4,568-4,614)
Make sure in the title you state that information between brackets corresponds to the 95%CI. In addition, I don’t think you need the legend on Table 2, you could probably delete from here;

Done! Note that we have now computed the non-parametric CIs for both outcomes and costs in order to avoid CIs dependency on the number of simulations run and also in order to be consistent with the (non-parametric) confidence ellipse presented in Figure 3.

As requested by Reviewer 2, we have deleted most of the abbreviations defined in Table 2 in order to avoid redundant information.

4. Probably, in Figure 4, you could move the vertical axe to the very left to help readers to see the numbers on it!

Done!

Thank you very much for your hard work addressing all the comments.

Thank you very much for your valued contributions to this manuscript!