Author's response to reviews

Title: A phenolic ester from Aglaia loheri leaves reveals cytotoxicity towards sensitive and multidrug-resistant cancer cells

Authors:

Else G Dapat (elsegdapat40@gmail.com)
Sonia D Jacinto (soniajac2008@gmail.com)
Thomas Efferth (efferth@uni-mainz.de)

Version: 7 Date: 21 October 2013

Author's response to reviews: see over
Confidential comments to editors

Title: A phenolic ester from Aglaia loheri leaves reveals cytotoxicity towards sensitive and multidrug-resistant cancer cells

Authors:

Else G Dapat (elsegdapat40@gmail.com)
Sonia D Jacinto (soniajac2008@gmail.com)
Thomas Efferth (efferth@uni-mainz.de)

Version: 5 Date: 15 October 2013

Comments: see over
Dear Madam Rumjanek:

Below are my answers to your comments. Thank you so much once again for sharing your time for the betterment of my paper. I do highly appreciate your effort.

Respectfully,
Else G. Dapat

Essential revisions-
The authors answered the following to the question of using activated PBMC as controls of normal cells (see below). However, they must add in material and methods the culture conditions for PBMC culture (number of cells per well, culture medium, mitogen concentration and which mitogen did they use, culture time). The information of mitogen used should also be present in the legend of figure 3.

LINES 141 – 149: UNDER METHODS: CELL CULTURE & SUPPLEMENTS

Peripheral blood mononuclear cells (PBMC) were isolated from freshly collected whole blood sample using Ficoll-paque solution (Histopaque-1077) (Sigma) by centrifugation |27|. The cells were washed twice with RPMI-1640 and were re-suspended in same culture medium (RPMI-1640). Cells (0.5 mL of cell suspension) were seeded in a 24-well sterile plate at a density of 10^6/mL prior to activation with 0.5 mL of 10μg/mL of phytohemagglutinin (PHA). Addition of 0.5 mL of PHA into each well (0.5 mL RPMI-1640 to one control group) adjusted the number of cells to a final density of 5×10^5/mL per well. The cells were incubated at 37°C and 5% CO₂ for 3 days prior to XTT assay.
In connection with this, a cell viability test was performed separately using activated peripheral blood mononuclear cells (PBMC). After exposing the cells to various concentrations of Maldi 531.2[M+H]+, a decrease in cell viability was also observed with an IC50 of 50.86 µM (Figure 3). However, the level of toxicity is much less than its effects toward CCRF-CEM and ADR5000/CEM cells.

LINES 361 – 366: UNDER RESULTS

In connection with this, a cell viability test was performed separately using PHA-activated peripheral blood mononuclear cells (PBMC). After exposing the cells with various concentrations of Maldi 531.2[M+H]+, it was found to be cytotoxic (IC50: 50.86 µM) as seen in Figure 3. However, despite its cytotoxic effects on PBMC, the level of toxicity is much less than its effects toward CCRF-CEM and ADR5000/CEM cells.

LEGEND OF FIGURE 3
Figure 3 Growth inhibition of Maldi 531.2[M+H]+ toward peripheral blood mononuclear cells (PBMC) determined by XTT assay after incubating the cells with the isolate for 72 hr. in a humidified environment. Values are means±SEM of six replicates each of two independent experiments.

LINES 742 – 746: LEGEND OF FIGURE 3

Figure 3 Growth inhibition of Maldi 531.2[M+H]+ toward peripheral blood mononuclear cells (PBMC) activated with 10µg/mL PHA. Viability of PBMC was determined by XTT assay after incubating the cells with the isolate for 72 hr. in a humidified environment (37°C and 5% CO2). Values are means±SEM of six replicates each of two independent experiments.