Author's response to reviews

Title: Camel Milk Ameliorates Steatohepatitis, Insulin Resistance and Lipid Peroxidation in Experimental Non Alcoholic Fatty Liver Disease

Authors:

Aida A Korish (iaidakorish@yahoo.com)
Maha M Arafah (marafah@hotmail.com)

Version: 3 Date: 4 April 2013

Author's response to reviews:

Dear Chief Editor of BMC Complementary & Alternative Medicine

In fact this is our first submission of this manuscript to your journal, but before this we submitted this article for possible publication in Nutrition & Metabolism and we received valuable reviewers' comments. We revised the manuscript taking into consideration these remarks, and we re-submitted the revised manuscript to Nutrition & Metabolism and we received the following reply from the Chief Editor: "Due to the editorial interests of our board and a recent change in our policy, the journal has decided to only accept papers that emphasize metabolism and/or mechanisms. For these reasons, although your MS is of obvious importance, it does not fit current needs and I have withdrawn your paper. This is entirely based on our areas of interest rather than any judgment on the quality of the paper.

The chief editor advised us to transfer our manuscript to other journal of your publisher BioMed Central Publisher, and we selected your journal for transferring our manuscript based on the scope of the journal and the good reputation between the journals interested in alternative and complementary medicine.

(We included down a Point-by-Point response to the Reviewer's comments.)

Here is the point-by-point response to Reviewer's Comments we received from Nutrition & Metabolism:

Title: Effect of Camel Milk on Steatohepatitis, Insulin Resistance and Lipid Peroxidation in Rats on High Fat-Rich Cholesterol Diet

Version: 1 Date: 9 December 2012

Reviewer number: 1

Reviewer's report:

This is a well-designed, community-relevant study, with an appealing nutritional approach. The authors probed favorable multifaceted effects for camel-milk (CM) against metabolic anomalies and hepatocellular derangements commonly known for non-alcoholic fatty liver (NAFL) that was induced by chronic administration of a high-fat, cholesterol-rich diet.
I- Major compulsory revision:

1- Oxidative stress entailed to NAFL was looked at in serum. Because liver and adipose tissue are the main driving organs under focus which are most devastated by fatty diet, oxidative stress should be evaluated in the liver as well, at least for one parameter as reduced glutathione, TBARS and/or catalase. Please include such data and compare it with earlier ones found in literature for alcoholic hepatitis models also treated with CM.

The oxidative stress in the liver was evaluated by measuring MDA, CAT and GSH. In addition, the serum MDA and GSH levels were also measured. The results were analyzed and compared with similar studies in the discussion section.

2- While CM protected liver structure and reduced pathological elements in rat serum, one can not preclude the possibility of protection via kinetic interaction in the gut. In other words, how the contention that CM prevents/interferes with fat absorption can be evaluated or at least discussed/defended. Literature may help answer this query.

Actually the hepatoprotective effects of CM could be related to a direct effects of CM on the hepatic cells carried out by the particular composition of CM being rich in vitamins, minerals, insulin, insulin like proteins, and several other specific ingredients. However other indirect mechanisms related to its anti-inflammatory, antioxidant, immunomodulatory and antimicrobial effects could also be proposed. These mechanisms were discussed in details with reference to the related earlier publications in the Discussion section page 15 &16.

II- Minor essential revision:

Methods:

1- Title for blood glucose should be (Blood glucose), as it involves both fasting and random glucose.

Title was changed to blood glucose.

2- SGOT and SGPT should be changed to the more recent nomenclature, AST and ALT.

The nomenclature, AST and ALT were used instead of SGOT and SGPT.

3- Catalase activity unit should be expressed as nmol H2O2/min /mg serum protein) rather than (/ml serum volume), especially that the CM group had significantly higher total serum protein values.

Catalase activity was recalculated as nmol H2O2/min /mg serum protein.

Results:

Table 1:
Calculations for % body weight gain are swopped for control and CCM; and are erroneous for Ch (should be 35.8).

The mentioned values were revised

Table 4:
The data of mean and SD (for CCM) are reversed; apparently text direction was altered to (right to left). Why the SD values for atherogenic index appear high as related to the means; reconsider your calculations.

The typing error was corrected.

Table 5:
Correct SD value of SGOT for ChM.
Corrected
Discussion:
Has reasonable coverage and depth. Correct the typo for antioxidant vitamins (B, C, E to A, C, E)
Correction was done.

III- Discretionary revision:
1- Data presentation can be improved by making some of the tables as bar-graphs, with inclusion of basal levels in the legend/footer or so.
Actually the presentation of the data is now in the form of 4 figures and 2 tables as advised.
2- English language in some sections needs to be revised (Introduction, Methods, Results, ). In particular, there are some long statements (4-5 lines), some tenses are not consistent within the same sentences, some pleural adjectives).
Language and grammatical revision was done to the manuscript.
3- Include the exact sort/code of financial support if any.
The exact number of the grant is DSR 09-704 was included.
(End of comments).

Looking forward for your cooperation.

Corresponding author
Dr. Aida A Korish, MBBS, MSc, PhD
Associate Professor of Physiology
Faculty of Medicine
King Saud University
Phone: + (966)-506-282-704
Fax: + (966)-147-86798 or + (966)-146-72567
E-mail: iaidakorish@yahoo.com