Reviewer's report

Title: Knee complaints seen in general practice: athletes versus non-athletes

Version: 1 Date: 17 December 2007

Reviewer: Stephen Brealey

Reviewer's report:

General

This study recognises that complaints of the lower extremeties are a common problem and so is designed to investigate differences in knee complaints between athletes and non-athletes presenting in general practice.

------------------------------------------------------------------------------------

Major Compulsory Revisions (which the author must respond to before a decision on publication can be reached)

None.

------------------------------------------------------------------------------------

Minor Essential Revisions (such as missing labels on figures, or the wrong use of a term, which the author can be trusted to correct)

The study questions are well-defined and clearly presented.

The study design is appropriate and adequately described and appears to be conducted on quite a large scale and thus has adequate generalisability. There seems to be an adequate definition and distinction between athletes and non-athletes. I am not sure the WOMAC was the best instrument of choice as it is designed as an osteoarthritis index when the anticipated injuries are those of the anterior cruciate ligament and meniscus lesions. Is it possible to include a reference as to how the WOMAC has been validated in sports injury patients?

Analyses are controlled for confounders. However, why was logistic regression used to examine difference in type of knee complaints, and why was this analysis adjusted for age, gender, and BMI? It seems to me, particularly as you report the results of this analysis in Table 1, that you are only presenting these differences as baseline characteristics. Age, for example, might influence type of knee complaint between the two groups (such as osteoarthritis), but why adjust for it? I also don’t understand why in a regression model you would have type of knee complaint predicting whether a patient is an athlete or not. I would have thought chi-square tests of differences between the two groups for each knee complaint would be sufficient.

The Statistical analyses section could also be improved for making clearer what is the dependent variable for each analyses. Why was linear
regression analyses used to test pain and function (WOMAC) at one-year follow-up? Table 1 should define BMI as kg/m^2. For Table 3, why was the analysis adjusted for â##revisiting the GPâ##? This was not specified in the â##Statistical analysesâ## section. Does Figure 2 include 95% confidence intervals as specified in the title? May be the font size of the mean point estimates can be reduced so that the confidence intervals can be seen.

The discussion and conclusions are adequately supported by the data, however I would like to see the use of the word â##significantâ## used in the conclusions to more accurately describe the findings. For example, the conclusions should read â##Athletes are (significantly) more often advised to â##go easy on the kneeâ## and to rest than non-athletesâ##. Moreover, is it more accurate to state that â##Athletes are (significantly) more often advised to â##save the kneeâ## than non-athletesâ##? The analyses reported appears to have been undertaken for the policy â##Save the kneeâ## and not for individual elements within it.

The title does not convey what was found but adequately describes the study. The abstract could be improved as described above with the appropriate use of describing what findings were significant.

Discretionary Revisions (which are recommendations for improvement but which the author can choose to ignore)

None.

What next?: Accept after minor essential revisions

Level of interest: An article whose findings are important to those with closely related research interests

Quality of written English: Acceptable

Statistical review: Yes, but I do not feel adequately qualified to assess the statistics.

Declaration of competing interests:

I declare that I have no competing interests.