Reviewer's report

Title: Loss of heterozygosity at the ATBF1-A locus located in the 16q22 minimal region in breast cancer

Version: 2 Date: 17 June 2008

Reviewer: Anne-Marie Cleton-Jansen

Reviewer's report:

Major compulsory revisions
1. The authors should cite our recently published paper (Cleton-Jansen, BMC Cancer 2008, 8:105). I understand that at the time of submission our paper was not yet available, but it could now be added to the references.

2. Several times the authors suggest that transcriptional down regulation instead of LOH is the mechanism by which ATBF1 expression is decreased (page 6, 13, 17 and 18), however, actually there is no experimental proof provided in this paper. The manuscript will gain significance if this is confirmed.

3. The authors should state how it was assessed whether there was sufficient tumor percentage present in the tissues that they used for LOH analysis.

Minor compulsory revisions
4. Page 3: chromosome arm 16q22 is not entirely correct, 16q22 is a chromosomal band

5. Page 8: What is the reason for the PCR protocol for the LOH-PCR? 10 cycles denaturation at 94oC and subsequently 20 cycles at 89oC?

6. Page 9: It is not quite clear what is meant by at least 65% reduction in the height of a heterozygous peak. If a marker is heterozygous you always have two peaks. Do the authors perhaps mean 65% reduction of the ratio of the heterozygous peaks?

7. Page 9: The hotspots for mutation of ATBF1A are not real mutations but polymorphisms

8. Page 9: Sequencing is a standard technique and may perhaps not need to be described so extensively

9. Fig 2: Can the position of ATBF1 be indicated in the order of the microsatellite markers?

Level of interest: An article of insufficient interest to warrant publication in a scientific/medical journal
Quality of written English: Needs some language corrections before being published

Statistical review: No, the manuscript does not need to be seen by a statistician.

Declaration of competing interests:
I declare that I have no competing interests