Title: Identification of a robust gene signature that predicts breast cancer outcome in independent data sets

Authors:

James E. Korkola (korkolaj@mskcc.org)
Ekatarina Blaveri (eablaveri@gsk.com)
Sandy DeVries (devries@cc.ucsf.edu)
Dan H. Moore II (dmoore@cc.ucsf.edu)
E. SHELLEY Hwang (shelley.hwang@ucsfmedctr.org)
Yunn-yi Chen (yunn-yi.chen@ucsf.edu)
Anne L.H. Estep (aestep@cc.ucsf.edu)
Karen L. Chew (kchew@cc.ucsf.edu)
Ron Jensen (rjensen@cc.ucsf.edu)
Frederic M. Waldman (waldman@cc.ucsf.edu)

Version: 2 Date: 9 August 2006

Author's response to reviews: see over
Dear Sir or Madam:

Please find enclosed our manuscript entitled "Identification of a robust gene signature that predicts breast cancer outcome in independent data sets" by James E. Korkola, Ekaterina Blaveri, Sandy DeVries, Dan H. Moore III, E. Shelley Hwang, Yunn-Yi Chen, Anne L.H. Estep, Karen L. Chew, Ronald H. Jensen, and Frederic M. Waldman, which we are submitting for consideration for publication as an original article in Breast Cancer Research. This paper identifies, using robust selection methods, a gene expression signature that predicts outcome in breast cancer. It describes further validation of the predictive gene set in two independent breast tumor data sets. Furthermore, multivariate analysis shows that it is an independent predictive marker and that its predictive utility is superior to clinical parameters. This extensive validation of our gene marker set against published data demonstrates the importance of making gene expression data publically available, which we discuss. This paper has some of the most extensive validation of predictive gene sets of any published breast cancer study to date.

All microarray data utilized in this study is MIAME compliant. We will submit the data to a public repository upon acceptance of the manuscript. All authors of this research paper have read and approved the manuscript.

Sincerely,

Frederic M. Waldman, M.D., Ph.D.
Professor