Author's response to reviews

Title: Lung cancer symptoms and pulse oximetry in the prognostic assessment of patients with lung cancer

Authors:

Sandro J Martins (sjmartins@yahoo.com)
Nelson Ho (ho_nelson@hotmail.com)
Sueli O Cavamura (sueliokubo@hotmail.com)
Cecilia M Harada (plctg@yahoo.com)
Crystina A Yamamoto (crysaoki@yahoo.com)
Teresa Y Takagaki (t.takagaki@hcnet.usp.br)

Version: 4 Date: 15 February 2005

Author's response to reviews: see over
Title: The prognostic role of Lung Cancer Symptom Scale (LCSS) and pulse oximetry data in patients with lung cancer.

Version: 3 (7th December, 2004)

Answer to Reviewer's report

The Reviewer raised some important questions that had remained open in our previous manuscript. We avow that its suggestions have considerably improved this current version in clearness and thank him for careful detecting spelling and grammatical errors.

Major Compulsory Revisions

Background
In the reviewer’s opinion, symptom assessment instruments (e.g. LCSS, ESAS) are not proper for quality of life analysis in lung cancer patients. This statement is at least disputable, considering either the overwhelming effect of symptom distress to those patients or the conceptual framework of the LCSS; furthermore, it has been widely used as tool for QOL assessment in clinical trials (cf. Lilenbaum, 2005; Hollen, 2004; Gridelli, 2001). Karnofsky scale is a well-known performance status instrument, and we consider appropriate shorten the text not discussing its widely accepted prognostic value. Thus, we judge to be sufficient to clarify our viewpoint in the second paragraph ´…(LCSS) is a disease- and site-specific instrument primarily measuring the physical and functional dimensions of quality of life for individuals with lung cancer’.

Method
Black skin and nail abnormalities were deemed as exclusion criteria since they may impair signal caption by pulse oximeter; a note was added.

Data analysis
We rewrote this paragraph. It was lacking a statement on the method of factor selection and the set of variables considered for model building. A stepwise model selection algorithm was chosen since it combines the forward and backward procedures (c.f. Klein & Moeschberger, 1997).

Results
Redundancy in the paragraph ‘Pulse oximetry and LCSS scores’ was solved. The paragraph on survival analysis received the following addition:

- The number of events (38) was described
- ‘Global symptom scores failed to retain relevant prognostic value on univariate tests and were not selected to the survival modeling.’

Discussion
We reorganized this section. Unfortunately, Morita’s work on prognostic evaluation of terminally ill patients could not be listed in our reference since its patient profile was quite different from ours. A new paragraph addresses the discrepancy between observer and patient rated assessments, as suggested.
Minor Essential Revisions
Many spelling and grammatical errors were fixed.
Discussion was reorganized.