Author's response to reviews

Title: Analytic performance studies and clinical reproducibility of a real-time PCR assay for the detection of epidermal growth factor receptor gene mutations in formalin-fixed paraffin-embedded tissue specimens of non-small cell lung cancer

Authors:

Patrick O'Donnell (patrick.odonnell@roche.com)
Jane Ferguson (jane.ferguson@roche.com)
Johnny Y Shyu (johnny_y.shyu@roche.com)
Robert B Current (robert_b.current@roche.com)
Taraneh T Rehage (taraneh_tamaddon.rehage@roche.com)
Julie Tsai (julie.tsai@roche.com)
Mari Christensen (mari.christensen@roche.com)
Ha Bich Tran (ha_bich.tran@roche.com)
Shih-Chang Chien (shih-chang.chien@roche.com)
Felice Shieh (felice.shieh@contractors.roche.com)
Wen Wei (wei.wen@roche.com)
Hugh J Lawrence (jlawrence@genomichealth.com)
Lin Wu (lin.wu@roche.com)
Robert Schilling (robert.schilling@roche.com)
Kenneth Bloom (kenneth.bloom@ge.com)
Warren Maltzman (warren.maltzman@quintiles.com)
Steven Anderson (sanderson@labcorp.com)
Stephen Soviero (stephen.soviero@roche.com)

Version: 2 Date: 15 November 2012

Author's response to reviews: see over
Dear Editor,

Attached in the revised version of the original manuscript entitled “Analytic performance studies and clinical reproducibility of a real-time PCR assay for the detection of epidermal growth factor receptor gene mutations in formalin-fixed paraffin-embedded tissue specimens of non-small cell lung cancer”. Two changes were made in response to the initial assessment of the manuscript. First, an ethics statement for the specimens obtained for the validation studies and the external clinical reproducibility studies was added to the Methods section as recommended. Second, additional clarification was added regarding the implications of trial NCT00446225 to the present study. We hope that you find these revisions satisfactory and will consider this manuscript for additional review. We believe that this study will be of great interest to the scientific community in presenting a well-validated, reproducible method for the detection of EGFR mutations that requires minimal DNA and offers rapid turnaround time to results without affecting analytical performance.

Thank you again for your consideration.