Author's response to reviews

Title: Evaluation of bioactive sphingolipids in 4-HPR-resistant leukemia cells

Authors:

Aintzane Apraiz (aintzane.apraiz@ehu.es)
Jolanta K Idkowiak-Baldys (idkowia@musc.edu)
María Dolores Boyano (lola.boyano@ehu.es)
Gorka Pérez-Yarza (gorka.perezyarza@ehu.es)
Yusuf A Hannun (hannun@musc.edu)
Aintzane Asumendi (aintzane.asumendi@ehu.es)

Version: 2 Date: 19 July 2011

Author's response to reviews: see over
Dear BMC Cancer Editors,

Accompanying this file is our manuscript entitled "Evaluation of bioactive sphingolipids in 4-HPR-resistant leukemia cells" by Aintzane Apraiz García (aintzane.apraiz@ehu.es), Jolanta Idkowiak-Baldys (idkowiia@musc.edu), María Dolores Boyano (lola.boyano@ehu.es), Gorka Pérez-Yarza (gorka.perezyarza@ehu.es), Yusuf A Hannun (hannun@musc.edu) and Aintzane Asumendi (aintzane.asumendi@ehu.es) which we wish to submit for publication in the Research Paper section of BMC Cancer.

Contact information for each co-author:
1Department of Cell Biology and Histology, School of Medicine and Dentistry, University of the Basque Country. Sarriena s/n, 48940, Leioa (Bizkaia), Spain
2Department of Biochemistry and Molecular Biology, Medical University of South Carolina. 173 Ashley Ave, Charleston, SC 29425, USA

The manuscript is an original work in which for the first time, a leukemia cell model resistant to 4-HPR has been developed in order to describe the role of main altered sphingolipids in observed resistance to the drug. Moreover, we have studied the possible crossresistance of 4-HPR-resistant leukemia cells to other sphingolipid-modulating agents. Acquired resistance to anticancer drugs is a common problem and an important source of failure in chemotherapy. Therefore, determination of resistance providing and non-providing alterations is crucial together with the development of resistance treatment.

Previous studies by our group and others described the capability of 4-HPR to profoundly alter endogenous (dihydro)ceramide levels that have been linked to the effectiveness of this chemotherapeutic drug for long time. On the other hand, drug-resistance has been associated with modifications in the sphingolipid metabolism. In the present study, we applied advance LC/MS
technology for sphingolipid analysis in order to obtain detailed data on endogenous sphingolipid profiles and sphingolipid metabolism in 4-HPR-sensitive vs. resistance leukemia cells. Our results indicate that resistance to 4-HPR may persist even in the absence of the characteristic sphingolipid alterations driven by this synthetic retinoid. Alternative antitumoral strategies have been also introduced including specific modifications of bioactive sphingolipid pathways.

We suggest the following experts in the field as possible reviewers:

Paola Bruni
Department of Biochemistry
University of Florence
Viale G.B. Morgagni 50, 50134, Florence, Italy
E-mail: paola.bruni@unifi.it
Phone: +39-055-4598328
Fax: +39-055-4598905

Gemma Fabriàs
Research Unit on BioActive Molecules (RUBAM)
Departament de Química Biomédica, Institut de Química Avançada de Catalunya IQAC-C.S.I.C.
Jordi Girona 18-26, E-08034 Barcelona, Spain.
E-mail: gfqob@cid.csic.es
Phone: +34-93-400 6115
Fax: +34-93-204 5904

Riccardo Ghidoni
Laboratory of Biochemistry and Molecular Biology
San Paolo University Hospital and University of Milan
Via A. di Rudini 8 D, 20142, Milan, Italy
E-mail: riccardo.ghidoni@unimi.it
Phone: +39-02-50323250
Fax: +39-02-50323034

The nominees for reviewers have not conflict of interest with any of the authors of the paper being submitted.
Thank you for your consideration.

Sincerely,

Aintzane Asumendi, PhD
aintzane.asumendi@ehu.es