

between the H&E and NF sections, would have the same density of neurons. In brainstem and spinal cord regions, rabies antigen positive neurons were numerous (mostly 3 or 4+). This was in contrast with cytochrome c positive neurons in the same region (0 or 1+). We then had the conclusion that many of the rabies positive neurons were actually cytochrome c negative.

2. The paper would greatly benefit from the presentation of figures showing immunostained sections obtained from representative regions of the CNS. Figures of rabies positive-, cytochrome c positive- neurons and TUNEL staining were included.

3. Instead of the subjective plus/minus scoring of stained section shown tables 1 and 2, a morphometric analysis (e.g., cell counts/mm2 plus statistical analysis) would be more appropriate to support the conclusions drawn in this paper. We did not perform a morphometric analysis. Scale measurements of 0 - 4 were based on the followings:
 0- no antigen positive neuron in all fields
 1- 1 - 25 % antigen positive neuron(s) in the whole section
 2- 26 - 50% antigen positive neurons in the whole section.
 3- 51 - 75% antigen positive neurons in the whole section.
 4- 76 - 100 % antigen positive neurons in the whole section.
Although we realized that this measurement might not be of highest accuracy, the results obtained were striking in terms of density of cytochrome c and rabies antigen positive neurons in brainstem and spinal cord, thus, should be sufficient to draw the conclusion.

All inserted contents were underlined in the revised manuscript.

We greatly appreciate your kind consideration and useful comments of both reviewers.

With our warmest regards,

Thiravat Hemachudha, MD
Molecular Biology Laboratory for Neurological Diseases
Department of Medicine
Neurology Division

Shanop Shuangshoti, MD
Department of Pathology
Division of Neuropathology

Chulalongkorn University Hospital
Bangkok, Thailand.