Author's response to reviews

Title: Optimizing Search Strategies to Identify Randomized Controlled Trials in Medline

Authors:

Li Zhang (li.zhang@usask.ca)
Isola Ajiferuke (iajiferu@uwo.ca)
Margaret Sampson (msampson@cheo.on.ca)

Version: 2 Date: 14 September 2005

Author's response to reviews: see over
Dear Editor,

We would like to thank the reviewers for valuable comments. We have studied the comments carefully and have made corrections according to the comments. We believe that this revised version has better described and interpreted the study.

Sincerely,

Li Zhang
Reviewer's report
Title: Optimizing Search Strategies to Identify Randomized Controlled Trials in Medline

Version: 1
Date: 16 June 2005
Reviewer: Ellen Crumley

Reviewer's report:
General
- Highly recommend a good proof-reading of this article as there are grammatical errors and inconsistencies throughout
 Thanks, we’ve corrected these errors and inconsistencies.

- Medline should be noted as MEDLINE throughout
 Thanks, we changed Medline to MEDLINE

- I have not seen the term high sensitivity search in the literature and suggest it be changed to the more standard highly sensitive in the manuscript
 Thanks, we changed “high sensitivity search” to “highly sensitive”.

- The search terms are italicized in the abstract, bolded and in quotes in the background, regular font in the tables, SSword combinations are inconsistently listed (e.g., SSword instead of SSword); please standardize all of these throughout the manuscript (see paragraph 2 in the results)
 Thanks. We italicized the search terms in the background, and used SSword in the tables.

- OVID should be in caps throughout
 Thanks. We changed OVID in caps.

- I would recommend you take a look at the article Kagolovsky Y, Moehr JR. Current status of the evaluation of information retrieval. J Med Syst.2003 Oct;27(5):409-24 which was recently referred to me as it discusses the limitations of using precision and sensitivity.
 Thanks, we added it to the discussion.

Major Compulsory Revisions (that the author must respond to before a decision on publication can be reached)
- I would give Appendix 2 more context as it seems to be searching for different studies; I found this a bit confusing to understand
 We added some explanations to Appendix 2.

Methods:
- Please explain why the particular search terms were chosen as there are others that may have also been used (e.g., Cochrane search strategy, Dickersin search strategy, etc.)
 We added the following sentence in the last paragraph of Background section:
Although a few studies [13,14] have explored different search strategies to identify RCTs in MEDLINE, they are all focused on improving the comprehensiveness of the search strategies. As an increasing number of systematic reviews have to be completed within tight budgets and timelines, it is necessary to strike a balance between the comprehensiveness and the precision.

Results:
- The results section is a little sparse, I would prefer more results to be presented (also see suggestions in Minor Essential Revisions section); for instance, what were the sensitivities from the 61 reviews that included the search strategies? How do these sensitivities compare to the results from the 94/96 reviews for each of the 6 search categories (i.e., known vs. unknown search strategies)? I would recommend you discuss the precision results for all the search categories (I realize they are in Table 3, but would think some discussion of these would help shed more light on your results).

We have added the following to the Discussion section:

There is no obvious difference between the sensitivities of the 61 reviews which listed their detailed search strategies and those of the 33 reviews which did not list their search strategies (both medians of sensitivities are 100%).

When SS$_{123}$ was used, 36 reviews (59.02%) had a very low precision (less than 1%); when SS$_{12}$, SS$_{crossover}$, SS$_{CROSS-OVER STUDIES}$, or SS$_{volunteer}$ was used, 21 reviews (34.43%) had a precision less than 1%; When SS$_{versus}$ was used, 22 reviews (36.07%) had a precision less than 1%.

Discussion:
- I am not sure it can be concluded that SS$_{versus}$ is more effective for musculoskeletal injury reviews based upon 2 studies. Can you explain this conclusion further please.

After careful reconsideration of the comments by all the reviewers, we have changed the interpretation of the results. You are right; we can’t draw the conclusion that SS$_{versus}$ is more effective for musculoskeletal injury reviews based on 2 studies. The changed interpretation is as follows (in the first paragraph of Discussion section):

A comprehensive search is considered one of the key factors that distinguish a systematic review from a narrative review, and it is well-known that missing relevant studies will possibly result in bias for systematic reviews. The study shows that SS$_{123}$ will miss less relevant studies than SS$_{versus}$. However, the comprehensiveness of systematic review searches not only depends on search filters but also depends on the varieties of databases searched. The Cochrane Central Register of Controlled Trials (CENTRAL) is the most comprehensive database of controlled trials. It is hoped that CENTRAL can serve as an all-inclusive source of controlled trials. When searching this database, reviewers can retrieve relevant studies by using relatively simple subject search, thus avoiding the problem of selecting search filters. Each Collaborative Review Group (CRG) also develops a subject specialized register of trials to ensure that reviewers within the CRG have access to the maximum number of studies to their topic. All
the reviews screened in this study indicated that they searched CENTRAL or the specialized CRG registers. The Cochrane Collaboration has done extensive job to enhance the comprehensiveness of CENTRAL. Therefore, we suggest reviewers use HSSS\textsubscript{versus} instead of HSSS\textsubscript{123} to search for RCTs in MEDLINE if they are planning to search CENTRAL or the specialized CRG registers as well, as our results show that HSSS\textsubscript{123} is not cost-effective. If reviewers don’t have access to CENTRAL or the specialized registers, we would suggest that they still use all three phases of the HSSS to maintain the quality of systematic reviews.

Tables
- Are the results from 96 or 94 reviews (94 is stated in the text but 96 is in table 2)?
 The 2nd paragraph in the results states 94 reviews in the first sentence but a few sentences later 96 reviews are discussed.
 Thanks, the results are from 94 reviews. We changed the number to 94 in Table 2 and in text.

Minor Essential Revisions (such as missing labels on figures, or the wrong use of a term, which the author can be trusted to correct)

Background:
- The acronym and full spelling for RCT is listed twice in the first paragraph
 Thanks, we deleted the second one.

- The first instance of Cochrane highly sensitive search strategy (2nd paragraph) needs to have the acronym in brackets after it as its the first time mentioned in the text
 Thanks, we added the acronym.

- In the 3rd paragraph cite do you need to cite reference #10 for Lefebvre and Clarke?
 Thanks, we cited the reference

Discussion:
- The call for reporting search strategies has occurred in Cochrane and the full strategies for all resources searched are now included in the additional tables; you may want to mention this
 Thanks, we added the following words in the paragraph:
 The Cochrane Collaboration started to recommend reviewers to report the full search strategies in the additional tables section of the Cochrane systematic review reports in 2002 [26], and the recent Cochrane Handbook for Systematic Reviews of Interventions clearly indicates that reviewers should describe their search strategies in sufficient detail so that the process could be replicated

- What about considering the statement search strategies are available from the author as a criterai case the journal publishing the systematic review doesnt have room to publish the full search strategy?
 We added the following statement:
If journals publishing systematic reviews do not have space for authors to list their full search strategies, we suggest authors indicate search strategy available upon request.

- The last sentence in the discussion sounds like there is a call for a single subject search. I'd recommend pluralizing this.
 Thanks, we changed it.

Authors Contributions:
- should AI be IA?
 Thanks, we changed to IA.

References:
- #3: MEDLINE and EMBASE need to be in caps
 Thanks, we changed it
- #10: has edited by twice
 Thanks, we cleared the citation.
- #19 and #22: MEDLINE needs to be in caps
 Thanks, we changed them.
- #23 and #25: [see comment] should be removed
 Thanks, we removed them.
- #24: the journal name should be shortened
 Thanks, we changed the references

Tables:
- the term cross-over studies/ is presented as a subject heading with the slash but this is inconsistent with the way its presented in the text (i.e., CROSS-OVER STUDIES); I'd recommend making this consistent
 Thanks, we deleted the slash and used SSword to be consistent with the text.

Appendices:
- The references in Appendix 3 all have a colon at the end
 Thanks, we deleted the colon.
Version: 1
Date: 5 July 2005
Reviewer: K Robinson
Reviewer's report:

General
As an increasing number of systematic reviews are being completed, often within tight time and cost restrictions, there is a need for efficient search strategies. This paper tries to address this need by developing a strategy more sensitive than Phases 1 and 2 of Cochrane HSSS but also more precise than using all phases of HSSS (phases 1, 2 and 3). It is, therefore, a potentially very useful article. There needs to be some clarification about methods, rationale and message so as to allow a reviewer to make an informed decision about what strategy to use when searching for RCTs.

Major Compulsory Revisions (that the author must respond to before a decision on publication can be reached)

1. The abstract touts the three additional studies identified by the addition of versus but fails to note at what cost. The three phases of the original HSSS retrieved 56 additional studies. What are the consequences of not identifying those studies for inclusion in a SR?

 Thanks, we added the following words in the first paragraph of Discussion section:
 A comprehensive search is considered one of the key factors that distinguish a systematic review from a narrative review, and it is well-known that missing relevant studies will possibly result in bias for systematic reviews.

2. The original HSSS includes text words with the qualification [tiab] (searching title and abstract). The authors add text words with the much less precise qualifier [tw] (text word). What is the rationale for doing so? What are the consequences of doing so?

 In OVID MEDLINE, the qualifier [tw] is the same as [ti,ab], as explained in the OVID MEDLINE Information page “The Text Word field in MEDLINE includes Title (TI) and Abstract (AB)”

3. Page 5 - Many Cochrane reviews do not detail in the text the specifics of the search strategy used, often referring to the specific Collaborative Review Group (CRG) search strategy. I would suggest adding some discussion of this issue, including how this impacted the number of reviews identified for screening (169 of xx?) as well as how this influenced the type of reviews retrieved. As shown in table 1, the Musculoskeletal CRG had many reviews selected whereas other CRGs with many reviews in the CDSR are not represented.

 We added the discussion of the specific CRG registers in the first paragraph of the Discussion section:

 However, the comprehensiveness of systematic review searches not only depends on search filters but also depends on the varieties of databases searched. The Cochrane Central Register of Controlled Trials (CENTRAL) is the most
comprehensive database of controlled trials. It is hoped that CENTRAL can serve as an all-inclusive source of controlled trials. When searching this database, reviewers can retrieve relevant studies by using relatively simple subject search, thus avoiding the problem of selecting search filters. Each Collaborative Review Group (CRG) also develops a subject specialized register of trials to ensure that reviewers within the CRG have access to the maximum number of studies to their topic. All the reviews screened in this study indicated that they searched CENTRAL or the specialized CRG registers. The Cochrane Collaboration has done extensive job to enhance the comprehensiveness of CENTRAL. Therefore, we suggest reviewers use HSSS\textsubscript{versus} instead of HSSS\textsubscript{123} to search for RCTs in MEDLINE if they are planning to search CENTRAL or the specialized CRG registers as well, as our results show that HSSS\textsubscript{123} is not cost-effective. If reviewers don’t have access to CENTRAL or the specialized registers, we would suggest that they still use all three phases of the HSSS to maintain the quality of systematic reviews.

We also added discussion of CRG in the third paragraph of Discussion section:

The 33 reviews that did not list the full search strategies all referred to the specific CRG search strategies with a hyperlink to individual CRG websites. But when browsing the websites, we did not find the search strategies.

For each CRG, we suggest that the group search strategies be documented on the websites.

4. In the conclusions, are the authors suggesting the use of the strategy with versus added in those cases when reviewers are not using all three phases of the HSSS? Please clarify text in conclusions, and abstract, to provide appropriate guidance to those completing reviews (do so in relation to point 1 above).

After carefully reading the comments from all the referees, we changed our interpretation of data. The new conclusion is also listed in response to Point 3.

5. Page 4 - The objective of this study would be strengthened with the addition of a statement justifying the testing of the addition of terms to the original HSSS and the apparent lack of consideration of the other terms that have been suggested, and tested, since the 1994 publication of the HSSS.

We added the following statement to the last paragraph of Background section:

Although a few studies [13,14] have explored different search strategies to identify RCTs in MEDLINE, they are all focused on improving the comprehensiveness of the search strategies. As an increasing number of systematic reviews have to be completed within tight budgets and timelines, it is necessary to strike a balance between the comprehensiveness and the precision.
6. related to point 1 and point 5, why use this strategy and not some of the others developed?
We suggest using this search strategy because most of the other search strategies were focused on the comprehensiveness, as also explained in Point 5.

Minor Essential Revisions

1. In Background of Abstract - I think the sentence is supposed to send with inclusion not precision.
 Thanks, we changed it to inclusion.

2. Page 5 - Not sure what this part of the sentence adds anyway, but would suggest removing permanently
 Thanks, we removed ‘permanently’

3. Page 5, Finding Index - need to add n to known-item in last sentence
 Thanks, we corrected it.

4. Page 9 - second to last sentence, change is to has add is before still.
 Thanks, we corrected these.

5. page 8 - '123' not in subscript about half-way down page.
 Thanks. We changed it in subscript.

Discretionary Revisions (which the author can choose to ignore)

1. Background - is there a reference for the tendency of systematic reviews (SR) to be completed on RCTs? I would suggest a slight rewording here as the notion of a tool has just been used. Also, I think that the issue is that RCTs are seen as the gold standard for the evaluation of treatments/therapies. Are most SRs assessing effects of treatment?
 We added the reference of the Cochrane Handbook for the tendency of SR to be completed on RCTs. The new wording is:
 reviewers of the effects of health care interventions tend to base their reviews on Randomized Controlled Trials (RCTs), when possible, as they are one of the most rigorous study designs [3].

2. Page 6, Results - suggest changing first sentence to indicate that the SRs were identified (not selected) and that this represented X% of the number of reviews.
 Thanks, we added the following sentence before the first sentence of Results section:
 169 systematic reviews were identified from CDSR, which represented about 10% of reviews published in the database in 2003

3. I would suggest that the authors consider using Number Needed to Read or some other metric to get across to systematic reviewers/authors the benefit of using the strategy that they are suggesting.
 We added the following words to the last paragraph of Results section:
The median of initial retrieval of SS\textsubscript{versus} is about 1/3 of that of SS\textsubscript{123}, which means the number of articles needed to read by reviewers would be reduced significantly if SS\textsubscript{versus} instead of SS\textsubscript{123} was used to identify RCTs.
Major Compulsory Revisions
(The author must respond to these before a decision on publication can be reached. For example, additional necessary experiments or controls, statistical mistakes, errors in interpretation.)

1. Although the authors provide a detailed description we can’t quite follow what they did. Specifically, it would be helpful to have a figure of what was pooled from which source, including the size of the pool. This is opaque in the Abstract and something seems to be missing in the Methods section of the manuscript in the section on Sensitivity and Precision. Without understanding this, we can’t assess the findings. Clarification is required.

We have added two figures in the Methods section: one to illustrate the steps of how sensitivity and precision were achieved, the other shows the definition of sensitivity and precision.

2. The definition of precision doesn’t seem to make sense (perhaps because we don’t understand the contents of the “pool”). A search strategy in MEDLINE would not just retrieve trials unless it was perfectly specific, which is not possible for high sensitivity searches. We also don’t see how there could be over 500K articles retrieved (Table 3 All 3 Phases), if the database included only trials, so assume that the search strategies were run in MEDLINE itself (and so would have retrieved more than just trials). But no matter which database is used, one would not expect to retrieve so many studies if content terms were ‘and’ed into the strategy. Assuming that they weren’t for the precision calculations, they aren’t “real”. We are obviously confused about what was done, and would ask the authors to clarify this.

The classic definition of precision is:

\[P = \frac{\text{number of relevant documents retrieved}}{\text{number of documents retrieved}} \]

According to this definition, we define the relevant documents for each systematic review are the included studies indexed in Medline because we were testing the performance of the six search strategies in Medline. These were found by known-item search, and pooled together by “or”. We combined the pooled results with each of the six search strategies by “and” to get the nominator of precision: number of relevant documents retrieved by a search strategy.

In order to find the denominator, we replicated the subject search when possible, and combined the subject search with each of the six search strategies by “and”. The number of items retrieved is the denominator for precision.
The over 500k articles retrieved were the total of the initial retrieval for 61 reviews. To be clearer (also response to your Comment 6), we added Table 4 to illustrate the mean of initial retrieval of each systematic review for each search strategy.

3. Assuming that the methods are actually fine, and the results valid, the authors provide a valuable empirical test of a previously hypothetical approach to reducing reviewer burden. However, there is still perhaps a problem with the interpretation: the authors indicate that the “versus” strategy provides a desirable tradeoff because it misses 3 less articles than the other proposed strategies, but this finding is likely within the realm of chance and is unlikely to compensate for missing 56 articles. Why not just leave the conclusion that 3 of the proposed strategies don’t work at all, and versus is barely better?

After reading the comments from all the reviewers, we have changed our interpretation of the data. This was added to the first paragraph of Discussion section:

Across the 61 reviews, SS_{123} found 56 more relevant articles than SS_{versus}, and SS_{versus} found 3 more relevant articles than SS_{12}, SS_{crossover}, SS_{CROSS-OVER STUDIES}, or SS_{volunteer}. The size of initial retrieval of SS_{versus} for each review is about 1/3 of the initial retrieval of SS_{123}. The result shows that SS_{versus} will reduce the number of articles needed to be read significantly, thus reducing the reviewers’ work in assessing citations for eligibility, while maintaining a slightly better sensitivity than SS_{12}. Although the other three proposed search strategies also have a lower initial retrieval size than SS_{123}, their sensitivity is the same as SS_{12}. A comprehensive search is considered one of the key factors that distinguish a systematic review from a narrative review, and it is well-known that missing relevant studies will possibly result in bias for systematic reviews. The study shows that SS_{123} will miss less relevant studies than SS_{versus}. However, the comprehensiveness of systematic review searches not only depends on search filters but also depends on the varieties of databases searched. The Cochrane Central Register of Controlled Trials (CENTRAL) is the most comprehensive database of controlled trials. It is hoped that CENTRAL can serve as an all-inclusive source of controlled trials. When searching this database, reviewers can retrieve relevant studies by using relatively simple subject search, thus avoiding the problem of selecting search filters. Each Collaborative Review Group (CRG) also develops a subject specialized register of trials to ensure that reviewers within the CRG have access to the maximum number of studies to their topic. All the reviews screened in this study indicated that they searched CENTRAL or the specialized CRG registers. The Cochrane Collaboration has done extensive job to enhance the comprehensiveness of CENTRAL. Therefore, we suggest reviewers use HSSS_{versus} instead of HSSS_{123} to search for RCTs in MEDLINE if they are planning to search CENTRAL or the specialized CRG registers as well, as our results show that HSSS_{123} is not cost-effective. If reviewers don’t have access to CENTRAL or the specialized registers, we would suggest that they still use all three phases of the HSSS to maintain the quality of systematic reviews.
4. Again assuming that the methods are actually fine, and the results valid, it would be interesting to see the results for the phase 1 only search.

 We did not test the results for the phase 1 only search because Phase 1 contains only Publication Type and Medical Subject Heading, and it is generally agreed that a search for systematic review should contain both MeSH and free-text terms.

5. The authors should conduct some statistical comparisons for data presented in Tables 1 and 2.

 We think you may mean Table 2 and Table 3. We conducted Friedman Test for sensitivity and precision because the distributions of sensitivity and precision were skewed. The results are shown in the Mean Rank column of Table 2 and Table 3. χ^2 and P value were also listed.

6. The absolute numbers in terms of retrieval appears to more clearly show how researcher burden will be reduced than the actual precision figures. The authors should elaborate on this in the Discussion section of their paper.

 We added Table 4 to illustrate the initial retrieval of each search strategy, and add the following sentence in the Results section:

 The medians of initial retrieval of the four proposed search strategies and SS_{12} for each review range from 408-430 studies, and the median of SS_{123} is 1636 studies. The median of initial retrieval of SS_{versus} is about 1/3 of that of SS_{123}, which means the number of articles needed to be read by reviewers would be reduced significantly if SS_{versus} instead of SS_{123} was used to identify RCTs.

 We also used the absolute numbers in the Discussion section

Minor Essential Revisions
(The author can be trusted to make these. For example, missing labels on figures, the wrong use of a term, spelling mistakes.)

1. The Abstract is somewhat confusing. For instance, acronyms should be defined (e.g., RCTs). The fourth sentence of the Background section of the Abstract is difficult to interpret, “Some studies argue that the precision of the third phase (what is the third phase?) is too low to warrant its precision (what does this mean?)”. At the point of reading the abstract, most readers will not know what the “third phase” is, what the “top two phases are” and why “CROSS-OVER STUDIES” is in caps. Additionally, readers may not know what a known item search is.

 o We changed the acronym of RCT to full words “randomized controlled trials”.
 o In the fourth sentence of the section of the Abstract, we changed the word “precision” to “inclusion”
 o We added “which contains three phases” after “The Cochrane highly sensitive search strategy (HSSS)”.

We added “free text terms” before “volunteer, crossover, versus”, and also added “Medical Subject Heading” before “CROSS-OVER STUDIES” to show why “CROSS-OVER STUDIES” is in caps.

We replaced the “known-item search” sentence by this:
We replicated the subject search for 61 Cochrane reviews. The included studies of each review that were indexed in MEDLINE were pooled together by review and then combined with the subject search and each of the four proposed search strategies, the top two phases of the HSSS, and all three phases of the HSSS.

2. The authors should be consistent in terms of number presentation in the paper (the authors switch between spelling out numbers and just putting the number).
 Thanks, we changed to Numbers.

3. There is a missing space between “research” and “[2]” in the third sentence of the Background section of the paper. There is a missing space between “precision” and “[4]” in the Background section of the paper. And another between “trials” and “[5]”. And many other instances of this in the paper.
 Thanks! We corrected them!

4. References 2 and 6 have an inconsistent format for the citation. Additionally, reference 2 does not have the abbreviation for the journal name.
 Thanks, we corrected them.

5. The third sentence of the Background section of the paper is somewhat inaccurate. Reviewers base their reviews on RCTs likely because they are evaluating a treatment question. RCTs are the most rigorous study design for answering this type of question.
 We placed the original sentence by this:
 Although the studies evaluated in systematic reviews can be any kind of research reviewers of the effects of health care interventions tend to base their reviews on Randomized Controlled Trials (RCTs), when possible, as they are one of the most rigorous study designs.

6. RCT is defined twice in the Background section of the paper, third and fourth sentences.
 We deleted the second one.

7. In the Background section of the paper the authors should indicate why an ideal search has high sensitivity and high precision. Sensitivity and precision should also be defined.
 We added the definition of sensitivity and precision in this section:
 Sensitivity is defined as the proportion of relevant studies retrieved, while precision is the proportion of retrieved studies that is relevant.
 We added the following statement to indicate why an ideal search strategy had high sensitivity and high precision:
 An ideal search strategy should have high sensitivity and high precision, which means most of the available relevant items in a database are
retrieved by the search strategy and most of the items retrieved by the search strategy are relevant.

8. The ninth sentence of the Background section of the paper should be revised to something like, “This means that when using a highly sensitive search strategy many irrelevant studies will be retrieved, thus increasing the workload for the researcher conducting the systematic research.” Many irrelevant STUDIES will be retrieved not just many irrelevant RCTs as the authors indicate.
 Thanks, we have changed it.

9. Tenth sentence of the Background section of the paper, Jadad indicated that the reviewer should identify the maximum number of eligible trials. I think there is a slight distinction between “maximum” and “optimum”, the latter used by the authors.
 We have changed it.

10. Second paragraph, first sentence of the Background section of the paper should be changed to “The Medline…”.
 We have changed it.

11. Was the HSSS designed by Cochrane Collaboration or by Dickersin and colleagues and is recommended for use by reviewers conducting systematic reviews for Cochrane? (2nd paragraph of the Background section of the paper). We ask because the authors reference Dickersin’s paper.
 We have changed the sentences to:
 The Highly Sensitive Search Strategy (HSSS) [8] is a standard search strategy recommended by Cochrane Collaboration to identify RCTs in the MEDLINE database

12. Second paragraph, final sentence of the Background section of the paper, the authors indicate “…may be worth combining the top two phases with some of the terms in phase three, such as the free-text terms “volunteer”, “crossover” and “versus” …” However, 2 of these terms are not shown in Phase 3 of Appendix 1. Additionally, the one term that is shown in the appendix is truncated but the authors are not considering a truncated form of “volunteer”.
 Thanks. We changed the wording:
 As Lefebvre and Clarke [10] suggest, it would not be worth applying all the three phases but individual reviewers may consider it worth combining the top two phases with individual terms, such as the free-text terms volunteer, crossover and versus, and the Medical Subject Heading (MeSH) CROSS-OVER-STUDIES which was introduced after the search strategy was devised.

13. The word “the” should always appear before “highly sensitive search strategy” and “hsss”.
 Thanks, we added “the” before all the “highly sensitive search strategy” and “HSSS”.
14. Final sentence of the section titled “Selection of Systematic Reviews” a word is missing, “must indicate IF primary studies…”
 Thanks, we added “if”.

15. Second paragraph of the Results section of the paper, in the 1st sentence the authors state 94 reviews and in the 4th they state 96 reviews. Additionally, in Table 2, 5th column of the table, the authors state “across 96 reviews.” However, in the text of the article they indicate that they were only able to calculate the sensitivity for 94 reviews.
 Thanks, we changed 96 to 94.

16. The authors should ensure consistent use of subscripts in the Results section and Discussion section of the paper.
 We corrected this.

17. Second paragraph of the Discussion section, final sentence, this statement should be qualified, that is, their methods and results have practical significance for those conducting systematic reviews.
 Thanks, we added it to the final sentence.

18. Third paragraph of the Discussion section, there is an error in the 2nd to last sentence.
 Thanks, we corrected it:
 The study found that half of reviews in CAM reported the search terms used, but very few reviews (8.5%) actually listed the search strings.

Discretionary Revisions (These are recommendations for improvement which the author can choose to ignore. For example clarifications, data that would be useful but not essential.)
The Cochrane HSSS is not the most sensitive search strategy for detecting RCTs in MEDLINE. For completeness, the authors might want to note the following study in their Discussion: Haynes RB, McKibbon KA, Wilczynski NL, Walter SD, Werre S, for the Hedges Team. Optimal search strategies for retrieving scientifically strong studies of treatment from MEDLINE. BMJ 2005 May 21;330(7501):1179-82.
 We added this study to the second paragraph of Discussion sections:
 Haynes and colleagues [63] recently developed a search strategy to identify RCTs in the Medline that has a sensitivity of 95.8%.