Author's response to reviews

Title: Relationship between apolipoprotein(a) size polymorphism and coronary heart disease in overweight subjects

Authors:

Enzo Emanuele (enzo.em@libero.it)
Emmanouil Peros (e.peros@email.it)
Piercarlo Minoretti (p.minoretti@hotmail.com)
Colomba Falcone (c.falcone@smatteo.pv.it)
Angela D'Angelo (a.dangelo@email.it)
Lorenza Montagna (lorenza.montagna@email.it)
Diego Geroldi (d.geroldi@smatteo.pv.it)

Version: 2 Date: 8 Oct 2003

Authors' comment to the reviewer (A. Akanji).

We are grateful to the reviewer for his constructive criticisms on our paper.

SPECIFIC POINTS

. Although the cut-off point of BMI > 27 as indicative for overweight in Caucasians is not the gold standard, the reviewer should acknowledge that there are at least four papers (see ref. 22,23,24,25) which this cut-off has been accepted. Furthermore, these cut-off was mainly used by French investigators and we chose to use it as the threshold of being overweight for purpose of comparison with similar studies in our same geographic area.
. Dyslipidemia has been defined qualitatively according to a previous published work (see ref 28).
. The absence of CHD in the control group was defined on clinical grounds as done previously (see ref. 26).
. The immunoblotting method to detect apo(a) isoforms is now described in a bit more detail.
. The ADA classification for diabetes mellitus has been introduced as ref. 27.
. The new reference 21 regarding the contrasting results on the role of apo(a) isoforms in predicting CHD has been added.

MAJOR REVISIONS

. The value of Lp(a) levels in Table 1 has been corrected.
. As the reviewer pointed out, the higher prevalence of low molecular weight apo(a) isoforms in CHD overweight subjects was associated with higher Lp(a) plasma levels, whereas this was not the case of normal weight CHD subjects. In any case, it has been recently shown that the contribution of the apo(a) isoform size to the control of plasma Lp(a) level is considerably lower than previously calculated, because the variability in plasma Lp(a) concentration is not uniform across the apo(a) size spectrum (ref 17).
. Table 3 and 4 has been incorporated.
. A new Table 5 has been added to show the predictors of CHD in normal weight subjects.
. The methodological limitations of Lp(a) quantification has been presented in the Discussion section.

Authors' comment to the reviewer (E. Angles-Cano).
We are grateful to the reviewer for his constructive criticisms on our paper.

SPECIFIC POINTS

. We thank the reviewer's suggestion to analyse the effect of Lp(a) concentration on the basis of the relative contribution of each apo(a) isoform. Unfortunately, we are not able to address this issue in a revised version of the present paper.
. The role of apo(a) isoforms in predicting CHD in overweight subjects is now presented as an "association" rather than in a speculative pathophysiological explanation.
. The new ref 18 has been added
. The anticoagulant used for blood sampling and the apo(a) standard used have been added.
. The technical limitation of the laboratory methods are now discussed.
. Lp(a) levels are expressed as medians. In Table 1 the range of Lp(a) levels for all overweight subjects has been corrected.
. Table 3 has been changed according to the suggestions of the other reviewer. The difference in LMW apo(a) isoforms between overweight no CHD versus controls was not significant.