Author's response to reviews

Title: Bradykinin and adenosine receptors mediate desflurane induced postconditioning in human myocardium: role of reactive oxygen species

Authors:

Sandrine Lemoine (sand.lemoine2@wanadoo.fr)
Clément Buléon (buleon-c@chu-caen.fr)
René Rouet (rene.rouet@unicaen.fr)
Calin Ivascau (ivascau-c@chu-caen.fr)
Gérard Babatasi (babatasi-g@chu-caen.fr)
Massimo Massetti (massetti-m@chu-caen.fr)
Jean-Louis Gérard (gerard-g@chu-caen.fr)
Jean-Luc Hanouz (hanouz-ji@chu-caen.fr)

Version: 6 Date: 14 March 2010

Author's response to reviews: see over
Cover Letter

Sandrine Lemoine, Ph.D.
Département d'Anesthésie-Réanimation Chirurgicale (niveau 6),
CHU de Caen, Avenue Côte de Nacre,
14033 Caen Cedex, France.
Tel: (33) 2 31 06 47 36; Fax: (33) 2 31 06 51 37
email: sand.lemoine2@wanadoo.fr

to: Melissa Norton, MD
Editor-in-Chief BMC Anesthesiology

March 14, 2010

Re: Manuscript Title: "Bradykinin and adenosine receptors mediate desflurane induced postconditioning in human myocardium: role of reactive oxygen species"

Dear Doctor Norton,

On behalf of my co-authors, I am submitting the enclosed material for possible publication in BMC Anesthesiology.

Although desflurane is one of volatile anesthetics currently used in clinical practice, few studies observed mechanism involved in desflurane induced postconditioning (Lange M et al. Anesthesiology 2009;110:516-28; Lemoine S et al. Anesthesiology 2008,109:1036-44). Although some studies have shown that ischemic postconditioning activated the adenosine and bradykinin receptors, no data are available in the literature on the involvement of these receptors in desflurane induced cardioprotection and in human myocardium. Then, reactive oxygen species a pivotal role in cardioprotective mechanisms at the time of reperfusion it is well established that reactive oxygen species production may mediate and trigger the preconditioning signalling cascade, but at the present time, only one study suggested the role of reactive oxygen species production in isoflurane-induced postconditioning in mouse heart in vivo (Tsutsumi YM et al, Life Sci 2007,81:1223-7).
In the present study, we wished to evaluate the participation of adenosine and bradykinin receptors and reactive oxygen species production in desflurane-induced postconditioning; in addition we have determine whether adenosine and bradykinin given at the beginning of reoxygenation could mimic postconditioning, and whether adenosine and bradykinin receptors activation induced myocardial postconditioning via reactive oxygen species production.

Finally, the abstract of this present study has been selected among the 973 Euroanaesthesia 2010 accepted abstracts for presentation during the BAPC Runner-up Session 1 of the European anaesthesiology congress 2010.

I certify that:

1. I am authorized by my co-authors to enter into these arrangements.

2. I warrant, on behalf of myself and my co-authors, that:

 a. the article is original, has not been formally published in any other peer-reviewed journal, is not under consideration by any other journal and does not infringe any existing copyright or any other third party rights;

 b. We are the sole authors of the article and have full authority to enter into this agreement and in granting rights to BioMed Central are not in breach of any other obligation. If the law requires that the article be published in the public domain, We will notify BioMed Central at the time of submission upon which clauses 3 through 6 inclusive do not apply;

 c. the article contains nothing that is unlawful, libellous, or which would, if published, constitute a breach of contract or of confidence or of commitment given to secrecy;

 d. We have taken due care to ensure the integrity of the article. To our - and currently accepted scientific - knowledge all statements contained in it purporting to be facts are true and any formula or instruction contained in the article will not, if followed accurately, cause any injury, illness or damage to the user.

Sincerely yours

Sandrine Lemoine