Author’s response to reviews

Title: Comparison of electroencephalographic changes in response to acute electrical and thermal stimuli with the tail flick and hot plate test in rats administered with opiorphin

Authors:
Preet Singh (P.M.Singh@massey.ac.nz)
Kavitha Kongara (K.Kongara@massey.ac.nz)
David Harding (D.R.Harding@massey.ac.nz)
Neil Ward (N.Ward@massey.ac.nz)
Venkata Dukkipati (R.Dukkipati@massey.ac.nz)
Craig Johnson (c.b.johnson@massey.ac.nz)
Paul Chambers (J.P.Chambers@massey.ac.nz)

Version: 3 Date: 22 Mar 2018

Author’s response to reviews:

NURL-D-17-00536R2

Comparison of electroencephalographic changes in response to acute electrical and thermal stimuli with the tail flick and hot plate test in rats administered with opiorphin

Preet Singh; Kavitha Kongara; David Harding; Neil Ward; Venkata Sayoji Rao Dukkipati; Craig Johnson; Paul Chambers

BMC Neurology

Reviewer reports:

Catherine Rougeot, Ph.D. (Reviewer 1): In the revised manuscript, authors have already addressed all the change points and remarks formulated by the referee. The referee recommends the present revised manuscript for publication in the BMC journal.
Thanks

Bernard Roques, Professor Emeritus (Reviewer 2):

I confirm to be interested by the discovery of a natural inhibitor of enkephalins inactivation. What could be its role ? But at this stage some responses have to be given :

Is the release of this peptide related to pain stimuli ?
Line 56-58 (references 6 and 7)

2) In which tissue (brain, peripheral ...) are located this peptide ?
Line 57-58 (references 6 and 7)

3) By which mechanism is the peptide metabolized ?
Line 58-59 (reference 8)

4) What is exactly the inhibitory potencies of the native opiorphin towards NEP and APN ?
see line 54-54 (reference 4)

Answers to these fundamental questions must precede papers on the anti-nociceptive properties of opiorphin and eventual derivatives.