Supplemental Data

Interleukin-33 Ameliorates Experimental Colitis through Promoting Th2/Foxp3+ Regulatory T-Cell Responses in Mice

Lihua Duan,* Jie Chen,* Hongwei Zhang, Heng Yang, Ping Zhu, Ali Xiong, Quansong Xia, Fang Zheng, Zheng Tan, Feili Gong, and Min Fang

Online address: http://www.molmed.org

SUPPLEMENTARY MATERIALS AND METHODS

Cleavage of GST Tag and Production of a Polyclonal Anti-Mouse IL-33 Antibody

IL-33-GST fusion protein was cleaved with thrombin (Sigma-Aldrich, Shanghai, China), followed by polymyxin B column (PIERCE, Rockford, IL, USA) to remove endotoxin. The purity of rIL-33 was more than 95% determined by SDS-PAGE analysis, and the endotoxin levels were less than 0.01 Eu/μg of protein by the Limulus amebocyte lysate QCL-1000 pyrogen test (Bio-Whittaker, Walkersville, MD). A polyclonal anti-mouse IL-33 antibody (anti-IL-33) was raised in rabbits immunized with purified rIL-33. The activity of antibody was confirmed followed by the method as described previously (1). Briefly, BALB/c mice were administrated intraperitoneally (i.p.) with anti-IL-33 antibody or rabbit IgG at indicated concentrations. Two hours later, mice were challenged intranasally with rIL-33 (500ng/mouse). Bronchoalveolar lavage fluids (BALF) from mice were harvested 24 h later, and IL-5 levels in the BALF were determined by ELISA (ebioscience, San Diego, CA, USA) (Supplementary Figure S1).

Quantitative Real Time RT-PCR

Total RNA was extracted from colon tissues or IECs by TRIzol® Reagent (Invitrogen, Carlsbad, CA) as instructed. Reverse transcription of total RNA was performed using a first strand cDNA synthesis kit (MBI Fermentas, ON, Canada). Details of the procedures used for the quantitative RT-PCR using iCycler (BioRad, Hercules, CA) with a SYBR Green qPCR kit (Takara, Dalian, China) are previously described (2). Primer sequences used for IL-33, IL-13, TSLP, ALDH1A1, and TGFβ1 are listed in supplementary table 1. The primers for IL-4, IL-5, IL-6, IL-17, IFN-γ, and TNF-α gene were previously described (2, 3). For relative quantity, we used a method that compared the amount of target gene normalized to GAPDH.

Isolation LPMCs and IECs

LPMCs and IECs were prepared as described elsewhere (4). Briefly, colonic tissues were obtained from mice and were opened longitudinally. IECs were isolated by incubation in pre-warmed Ca2+, Mg2+-free HBSS containing 5 mM EDTA and shake in shaking/orbital incubator at 37 °C for 20 min. Mononuclear, red blood, and dead cells were removed by using a 40% Percoll Plus gradient (GE Healthcare, Uppsala, Sweden), IECs were enriched at the interface. The remaining tissues were digested at 37 °C gentle shaking for 90 min with collagenase (invitrogen) and DNase I (Sigma-Aldrich) in the presence of 5% FBS, 100 IU/ml penicillin and streptomycin. The LPMCs were purified by centrifugation through a 40%/70% discontinuous Percoll gradient.

IL-33 AMELIORATES MURINE COLITIS

Supplementary Figure S1. Polyclonal anti-IL-33 exhibits the blocking activity of IL-33. To assess the blocking effect of anti-IL-33 antibody, BALB/c mice (n = 3) were administrated intraperitoneally (i.p.) with rabbit IgG or anti-IL-33 antibody at indicated concentrations. Two hours later, mice were challenged intranasally with rIL-33 (500 ng/mouse). Bronchoalveolar lavage fluids (BALF) from mice were harvested 24 h later, and IL-5 levels in the BALF were determined by ELISA. The data shown are representative one of three separate experiments. *p < 0.01.

Supplementary Figure S2. Anti-CD25 antibody administration depletes the CD25+ Tregs entirely. Mice were sacrificed 24 h after anti-CD25 antibody or control IgG (n = 3) injection. Then the lymphocytes of spleen and MLN were harvested to analyze the CD25 expression by flow cytometry.

Supplementary Figure S3. rIL-33 treatment up-regulates expression of IL-4 protein, Foxp3 and IDO. rIL-33 was administered i.p. to mice with TNBS colitis, and PBS was served as control. Mice were sacrificed on d 4 after TNBS treatment. (A) The expression of IL-4, Foxp3 and IDO protein in colonic tissues was assessed by immunoblot. (B) The expression of Foxp3 and IDO were also analyzed by real-time PCR. (C) MLN cells were collected from mice of each group, and then stained with antibodies against CD4 and Foxp3. Percentage of CD4+Foxp3+ in CD4+ subset was determined by flow cytometry. The data represent mean ± SD (n = 6 - 8/group). Results of the experiment were repeated three times and similar results were obtained. # p < 0.01.

Supplementary Figure S4. rIL-33 has no direct effect on the development of CD103+CD11c+ BMDC. (A) The expression of IDO in the subpopulation of BMDCs by CD103 was determined by flow cytometry. (B) The differentiated BMDCs were activated by IL-33 for 24 h (up panel) or the bone marrow cells were differentiated into DCs in the presence of rIL-33 for 7 d (low panel), followed by flow cytometry analysis of CD103 expression. Data are from one experiment representative of three.