Supplementary Figure 6. Effect of changes in \dot{Q}_T on P_aCO_2, over a range of $\frac{\dot{Q}_S}{\dot{Q}_T}$

Results for $\dot{Q}_{EC} = 3$ l/min. The effect of increases in \dot{Q}_T depends on the pulmonary shunt fraction. With $\frac{\dot{Q}_S}{\dot{Q}_T}$ of 1, there is a small increase in P_aCO_2 as cardiac output rises; $\frac{\dot{Q}_S}{\dot{Q}_T}$ of 0.9, there is almost no effect. With $\frac{\dot{Q}_S}{\dot{Q}_T} \leq 0.7$, there is a fall in P_aCO_2 as cardiac output rises.