Figure S3. Selected representative smear slide images showing typical microscopic characteristics of basal sand ~ coarse silt layer and upper mud layer of the turbidites, in addition to the hemipelagites in NT13-19 PC08 core. Both the hemipelagites and the turbidites (both of the basal sands and the turbidite muds) contain few carbonate fractions, suggesting that the origins of turbidity currents are below carbonate compensation depth (CCD). The diatomaceous hemipelagic mud (A, D, and G) is almost composed of diatoms and siliceous sponge spicules accompanied by few clastics. Turbidite muds (B, E, and H) consist of diatoms, siliceous sponge spicules, and few clastics, with amorphous organic matter particles. Basal sands of the turbidite (C, F, and I) include rock fragments and minerals such as quartz and aegirine-augite, as well as diatoms, siliceous sponge spicules, and organic matter particles. A: diatomaceous hemipelagic mud, 51 cm (in core depth); B: turbidite (T2) mud, 64 cm; C: basal sand of the turbidite T2, 71 cm; D: diatomaceous hemipelagic mud, 194 cm; E: turbidite (T4-2) mud, 202 cm; F: basal sand of the turbidite T4-2, 205 cm; G: diatomaceous hemipelagic mud, 268 cm; H: turbidite (T7) mud, 281 cm; I: basal sand of the turbidite T7, 290 cm. a: parallel nicols; b: crossed nicols. Scale bars: 100 μm. The horizons of A-I are shown in Fig S1.
Figure S3. (continued)