The start of migration correlates with arrival timing, and the total speed of migration increases with migration distance in migratory songbirds: a cross-continental analysis

Heiko Schmaljohann

Content:
1. General stuff
2. Adjusting and generating additional variables
3. Modelling variation in arrival timing at the breeding area
4. Modelling variation in arrival timing at the wintering ground
5. Modelling variation in total speed of migration via total migration distance
6. Modelling variation in total speed of migration via body mass
7. Modelling variation in total speed of migration via body mass and controlling for shared ancestry

1. General stuff

Libraries
library(arm)
library(blmeco)
library(lme4)
library(maptools)
library(MuMIn)
library(plyr)
library(shape)
library(usdm)
library(phytools)
library(nlme)
library(optimx)

Set time to GMT
Sys.setenv(tz="GMT")

Define and set work directory
wd <- "your work directory"
setwd(wd)

Read data
dat <- read.csv("individual data on arrival timing.csv", sep="", header = T, dec = ".")

2. Adjusting and generating additional variables
a) converting dates in Julian dates
start_mig = date when migration was started
dat$start_mig.jd <- strptime(dat$start_mig, "%d/%m/%Y")$yday+1
end_mig = date when migration was terminated
```r
# defining color per ID
t.levels <- levels(dat$ID)
t.col <- intpalette(c("olivedrab3", "orange", "blue", "yellow1", "black"),
                 #c("grey75", "olivedrab3", "orange", "lightgrey", "blue", "yellow2"),
                 numcol=length(t.levels))
dat$t.col <- t.col[as.numeric(dat$ID)]
```

3. Modelling variation in arrival timing at the breeding area

3.1. Adjusting data

a) generating variables
selecting spring data and excluding NA-values
s.dat <- dat[dat$season=="spr" & !is.na(dat$end_mig.jd) & !is.na(dat$start_mig.jd),]
reset levels of factor "ID"

```r
s.dat$ID <- factor(s.dat$ID)
```

```r
# renaming variable (arr = arrival timing)
s.dat$arr.spr.mig.jd <- s.dat$end_mig.jd
```

```r
# scaling variables
s.dat$arr.spr.mig.jd_s <- scale(s.dat$arr.spr.mig.jd, center = FALSE)
s.dat$start_mig.jd_s <- scale(s.dat$start_mig.jd, center = FALSE)
s.dat$total.dist_s <- scale(s.dat$total.dist, center = FALSE)
s.dat$t.speed_s <- scale(s.dat$t.speed, center = FALSE)
```

To distinguish between within- versus between-species effects, I followed the recommendations of van de Pol & Wright (2009, Animal Behaviour 77: 753-758).

b) within-species variation captured by within-species centering

```r
for (i in levels(s.dat$ID)) {
  s.dat$start_mig.jd_s_ws.center[s.dat$ID == i] <- scale(s.dat$start_mig.jd_s[s.dat$ID == i], scale = FALSE)
  s.dat$total.dist_s_ws.center[s.dat$ID == i] <- scale(s.dat$total.dist_s[s.dat$ID == i], scale = FALSE)
}
```

Centering around species mean effectively eliminates any between-species variation. This provides two new fixed effects expressing only their within-species variation (van del Pol & Wright 2009).

c) between-species variation captured by the species's mean

```r
for (i in levels(s.dat$ID)) {
  s.dat$start_mig.jd_s_s.mean[s.dat$ID == i] <- mean(s.dat$start_mig.jd_s[s.dat$ID == i])
  s.dat$total.dist_s_s.mean[s.dat$ID == i] <- mean(s.dat$total.dist_s[s.dat$ID == i])
}
```

d) assessing collinearity of explanatory variables for each species

```r
# species with collinearity >3, cf. Zuur et al. (2010, Methods in Ecology and Evolution 1: 3-14) are given
# only species with more than three individuals are considered
	species.coll.spr <- c()
n <- 0
for(i in levels(s.dat$ID)) {
  tmp <- vif(s.dat[s.dat$ID == i,c("start_mig.jd", "total.dist")])[[1,2]]
  if (tmp>3) {
    n <- n+1
  }
}
```

```r
print(c(i, round(tmp, 2)))
species.coll.spr[n] <- i # captures species, in which explanatory variables are collinear
} else if (nrow(s.dat[s.dat$ID == i,c("start_mig.jd", "total.dist")]) == 1)
{n <- n + 1
print(c(i, round(tmp, 2)))
species.coll.spr[n] <- i # captures species, in which explanatory variables are collinear
} else (next)
}

## [1] "blackpoll warbler" "8.25"
## [1] "chestnutcollared longspur" "4.9"
## [1] "common cuckoo" "6.35"
## [1] "pied flycatcher" "4.78"
## [1] "red-spotted bluethroat" "Inf"
## [1] "western kingbird" "Inf"

# number of species with collinear explanatory variables
length(species.coll.spr)
## [1] 6

3.2. Modelling variation in arrival timing at the breeding area
# a) modelling
mod <- lmer(arr.spr.mig.jd_s ~ start_mig.jd_s_ws.center +
            total.dist_s_ws.center +
            start_mig.jd_s_s.mean +
            total.dist_s_s.mean +
            (start_mig.jd_s_ws.center | ID),
            s.dat,
            REML = FALSE,
            lmerControl(optimizer = 'optimx', optCtrl=list(method='L-BFGS-B')),
            subset = !(s.dat$ID%in%species.coll.spr))

# This model was initially run with the two-way interaction "start_mig.jd_s_ws.center:total.dist_s_ws.center". The corresponding 95% CrI (-0.38, 0.36) included zero and was therefore removed.

# b) assessing model's assumptions

# compare plot to simulated data
par(mar=rep(4,4))
compareqqnorm(mod)
```
autocorrelation
par(mfrow=c(1,2), mar=rep(4,4))
acf(resid(mod))
acf(resid(mod), type="p")

[1] 3
--> no violation
--> no violation

residual plots

```r
t.cex <- 1
par(mfrow=c(3,2), mar=rep(4,4), mgp=c(3,1,0))
# Tukey-Ascombe plot: Residuals over predicted values
scatter.smooth(fitted(mod), resid(mod), main="Tukey-Anscombe Plot", cex=t.cex)
abline(h=0, lty=2) # residuals vs. fitted

# normal QQ plot of the residuals
qqnorm(resid(mod), main="Normal QQ plot, residuals", cex.main=t.cex) # qq of residuals
qqline(resid(mod))

# square-root of the absolute values of the residuals versus fitted values
scatter.smooth(fitted(mod), sqrt(abs(resid(mod))), main = "Scale-Location") # res. var vs. fitted

# several QQ plots of random slopes and intercepts
qqnorm(ranef(mod)$ID[,1], main="")
qqline(ranef(mod)$ID[,1])
title(main="Normal QQ plot of the random intercepts \nper species (start_mig.jd_s_ws.center)", cex=t.cex)
```
qqnorm(ranef(mod)$ID[,2], main="")
qqline(ranef(mod)$ID[,2])
title(main="Normal QQ plot of the random slopes \nper species (start_mig.jd_s_ws.center)",
cex=t.cex)
plot.new(); plot.new()

--> no violation

c) drawing conclusions
nsim <- 5000
set.seed(0470) # specify the seed (starting value for random generator)
bsim <- sim(mod, n.sim=nsim)
colnames(bsim@fixef) <- names(fixef(mod))
r.fixef <- round(apply(bsim@fixef, 2, quantile, prob=c(0.025,0.5,0.975)),2)
r.fixef
number of individuals considered
length(mod@resp$y)

[1] 161

number of species considered
length(levels(mod@frame$ID))

[1] 17

model output
mod

Linear mixed model fit by maximum likelihood ['lmerMod']
Formula:
arr.spr.mig.jd_s ~ start_mig.jd_s_ws.center + total.dist_s_ws.center +
start_mig.jd_s_s.mean + total.dist_s_s.mean + (start_mig.jd_s_ws.center |
ID)
Data: s.dat
Subset: !(s.dat$ID %in% species.coll.spr)
AIC BIC logLik deviance df.resid
-403.7839 -376.0513 210.8919 421.7839 152
Random effects:
Groups Name Std.Dev. Corr
ID (Intercept) 0.06430
start_mig.jd_s_ws.center 0.24447 -0.63
Residual 0.05541
Number of obs: 161, groups: ID, 17
Fixed Effects:
(Intercept) start_mig.jd_s_ws.center
0.50841 0.28151
total.dist_s_ws.center start_mig.jd_s_s.mean
0.10208 0.39931
total.dist_s_s.mean
0.09719

marginal and conditional R-square
r.squaredGLMM(mod)

Warning: 'r.squaredGLMM' now calculates a revised statistic. See the help page.
Back-transformed effects

1. within-species

a) start of migration

```r
round(fixef(mod)[2] * (attr(s.dat$arr.spr.mig.jd_s, 'scaled:scale')/attr(s.dat$start_mig.jd_s, 'scaled:scale')), 2)
```

start_mig.jd_s_ws.center

```
0.39
```

b) total migration distance per 1,000 km

```r
round(fixef(mod)[3] * (attr(s.dat$arr.spr.mig.jd_s, 'scaled:scale')/attr(s.dat$total.dist_s, 'scaled:scale')), 4)*1000
```

total.dist_s_ws.center

```
2.3
```

2. between-species effect

a) start of migration

```r
round(fixef(mod)[4] * (attr(s.dat$arr.spr.mig.jd_s, 'scaled:scale')/attr(s.dat$start_mig.jd_s, 'scaled:scale')), 2)
```

start_mig.jd_s_s.mean

```
0.56
```

b) total migration distance per 1,000 km

```r
round(fixef(mod)[5] * (attr(s.dat$arr.spr.mig.jd_s, 'scaled:scale')/attr(s.dat$total.dist_s, 'scaled:scale')), 4)*1000
```

total.dist_s_s.mean

```
2.1
```

4. Modelling variation in arrival timing at the wintering ground

4.1. Adjusting data

a) generating variables

selecting spring data and excluding NA-values

```r
a.dat <- dat[dat$season == "aut" & !is.na(dat$end_mig.jd) & !is.na(dat$start_mig.jd),]
```

reset levels of factor "ID"

```r
a.dat$ID <- factor(a.dat$ID)
```

renaming variable (arr = arrival timing)

```r
a.dat$arr.aut.mig.jd <- a.dat$end_mig.jd
```

scaling variables

```r
a.dat$arr.aut.mig.jd_s <- scale(a.dat$arr.aut.mig.jd, center = FALSE)
a.dat$start_mig.jd_s <- scale(a.dat$start_mig.jd, center = FALSE)
a.dat$total.dist_s <- scale(a.dat$total.dist, center = FALSE)
a.dat$t.speed_s <- scale(a.dat$t.speed, center = FALSE)
```
To distinguish between within- versus between-species effects, I followed the recommendations of van de Pol & Wright (2009, Animal Behaviour 77: 753-758).

b) within-species variation captured by within-species centering

```r
for (i in levels(a.dat$ID)) {
  a.dat$start_mig.jd_s_ws.center[a.dat$ID == i] <- scale(a.dat$start_mig.jd_s[a.dat$ID == i], scale = FALSE)
  a.dat$total.dist_ws.center[a.dat$ID == i] <- scale(a.dat$total.dist_s[a.dat$ID == i], scale = FALSE))
```

Centering around species mean effectively eliminates any between-species variation. This provides two new fixed effects expressing only their within-species variation (van del Pol & Wright 2009).

c) between-species variation captured by the species's mean

```r
for (i in levels(a.dat$ID)) {
  a.dat$start_mig.jd_s_s.mean[a.dat$ID == i] <- mean(a.dat$start_mig.jd_s[a.dat$ID == i])
  a.dat$total.dist_s_s.mean[a.dat$ID == i] <- mean(a.dat$total.dist_s[a.dat$ID == i])
```

data for each species with collinearity >3, cf. Zuur et al. (2010, Methods in Ecology and Evolution 1: 3-14) are given only species with more than three individuals are considered

```r
species.coll.aut <- c()
n <- 0
for (i in levels(a.dat$ID)) {
  tmp <- vif(a.dat[a.dat$ID == i, c("start_mig.jd", "total.dist")])
  if (tmp > 3) {
    n <- n + 1
    print(c(i, round(tmp, 2)))
    species.coll.aut[n] <- i # captures species, in which explanatory variables are collinear
  } else if (nrow(a.dat[a.dat$ID == i, c("start_mig.jd", "total.dist")]) == 1) {
    n <- n + 1
    print(c(i, round(tmp, 2)))
    species.coll.aut[n] <- i # captures species, in which explanatory variables are collinear
  } else
    (next)
}
```

[1] "red-eyed vireo" "1"
[1] "red-spotted bluethroat" "16.4"
[1] "scissor-tailed flycatcher" "138.66"

```
# Warning in summary.lm(lm(y[, i] ~ ., data = y[-i])): essentially perfect
# fit: summary may be unreliable

# number of species with collinear explanatory variables
length(species.coll.aut)
```
4.2. Modelling variation in arrival timing at the wintering ground

a) modelling

mod <- lmer(arr.aut.mig.jd_s ~ start_mig.jd_s_ws.center +
 total.dist_s_ws.center +
 start_mig.jd_s_s.mean +
 total.dist_s_s.mean +
 (start_mig.jd_s_ws.center | ID),
 a.dat,
 REML = TRUE,
 subset = !(a.dat$ID %in% species.coll.aut))

This model was initially run with the two-way interaction "start_mig.jd_s_ws.center:total.dist_s_ws.center". The corresponding 95% CrI (-0.49, 0.35) included zero and was therefore removed.

b) assessing model's assumptions

compare plot to simulated data
par(mar=rep(4,4))
compareqqnorm(mod)

7

> no violation

autocorrelation

par(mfrow=c(1,2), mar=rep(4,4))

acf(resid(mod))

acf(resid(mod), type="p")
```r
# --> no violation

# residual plots
t.cex <- 1
par(mfrow=c(3,2), mar=rep(4,4), mgp=c(3,1,0))
# Tukey-Ascombe plot: Residuals over predicted values
scatter.smooth(fitted(mod), resid(mod), main="Tukey-Anscombe Plot", cex=t.cex)
abline(h=0, lty=2) # residuals vs. fitted

# normal QQ plot of the residuals
qqnorm(resid(mod), main="Normal QQ plot, residuals", cex.main=t.cex) # qq of residuals
qqline(resid(mod))

# square-root of the absolute values of the residuals versus fitted values
scatter.smooth(fitted(mod), sqrt(abs(resid(mod))), main = "Scale-Location") # res. var vs. fitted

# several QQ plots of random slopes and intercepts
qqnorm(ranef(mod)$ID[,1], main="")
qqline(ranef(mod)$ID[,1])
title(main="Normal QQ plot of the random intercepts \nper species (start mig.jd_s_ws.center)",
```
cex=t.cex)

qqnorm(ranef(mod)$ID[,2], main="")
qqline(ranef(mod)$ID[,2])
title(main="Normal QQ plot of the random slopes \nper species (start_mig.jd_s_ws.center)", cex=t.cex)
plot.new(); plot.new()

--> no violation

c) drawing conclusions
nsim <- 5000
set.seed(0470) # specify the seed (starting value for random generator)
bsim <- sim(mod, n.sim=nsim)
colnames(bsim@fixef) <- names(fixef(mod))
r.fixef <- round(apply(bsim@fixef, 2, quantile, prob=c(0.025,0.5,0.975)),2)
r.fixef
(Intercept) start_mig.jd_s_ws.center total.dist_s_ws.center
2.5% 0.04 0.16 -0.01
50% 0.29 0.33 0.02
97.5% 0.54 0.49 0.06
start_mig.jd_s_s.mean total.dist_s_s.mean
2.5% 0.39 0.05
50% 0.62 0.10
97.5% 0.85 0.16

number of individuals considered
length(mod@resp$y)

[1] 241

number of species considered
length(levels(mod@frame$ID))

[1] 21

model output
mod

Linear mixed model fit by REML ['lmerMod']
Formula:
arr.aut.mig.jd_s ~ start_mig.jd_s_ws.center + total.dist_s_ws.center +
start_mig.jd_s_s.mean + total.dist_s_s.mean + (start_mig.jd_s_ws.center |
ID)
Data: a.dat
Subset: !(a.dat$ID %in% species.coll.aut)
REML criterion at convergence: -700.2712
Random effects:
Groups Name Std.Dev. Corr
ID (Intercept) 0.06485
start_mig.jd_s_ws.center 0.26155 -1.00
Residual 0.04768
Number of obs: 241, groups: ID, 21
Fixed Effects:
(Intercept) start_mig.jd_s_ws.center
0.28837 0.32584
total.dist_s_ws.center start_mig.jd_s_s.mean
0.02497 0.61802
total.dist_s_s.mean
0.10283

marginal and conditional R-square
r.squaredGLMM(mod)

[1,] 0.3941459 0.7946291
Back-transformed effects

1. within-species
a) start of migration
round(fixef(mod)[2] * (attr(a.dat$arr.aut.mig.jd_s, 'scaled:scale')/attr(a.dat$start_mig.jd_s, 'scaled:scale')),2)

start_mig.jd_s_ws.center
0.41

b) total migration distance per 1,000 km
round(fixef(mod)[3] * (attr(a.dat$arr.aut.mig.jd_s, 'scaled:scale')/attr(a.dat$total.dist_s, 'scaled:scale')),4)*1000

total.dist_s_ws.center
1.2

2. between-species effect
a) start of migration
round(fixef(mod)[4] * (attr(a.dat$arr.aut.mig.jd_s, 'scaled:scale')/attr(a.dat$start_mig.jd_s, 'scaled:scale')),2)

start_mig.jd_s_s.mean
0.77

b) total migration distance per 1,000 km
round(fixef(mod)[5] * (attr(a.dat$arr.aut.mig.jd_s, 'scaled:scale')/attr(a.dat$total.dist_s, 'scaled:scale')),4)*1000

total.dist_s_s.mean
4.8

5. Modelling variation in total speed of migration via total migration distance

5.1. Adjusting data

log10-transformation of dependent and independent variables and producing within- and between-species effects (see above for explanations and see van der Pol & Wright 2009, Anim Behav)

a) spring data
s.dat$t.speed.log10 <- log10(s.dat$t.speed)
s.dat$total.dist.log10 <- log10(s.dat$total.dist)
for (i in levels(s.dat$ID))
s.dat$total.dist.log10_ws.center[s.dat$ID == i] <- scale(s.dat$total.dist.log10[s.dat$ID == i], center = TRUE, scale = FALSE)
for (i in levels(s.dat$ID))
s.dat$total.dist.log10_s.mean[s.dat$ID == i] <- mean(s.dat$total.dist.log10[s.dat$ID == i])

b) autumn data
a.dat$t.speed.log10 <- log10(a.dat$t.speed)
a.dat$total.dist.log10 <- log10(a.dat$total.dist)
for (i in levels(a.dat$ID))
a.dat$total.dist.log10_ws.center[a.dat$ID == i] <- scale(a.dat$total.dist.log10[a.dat$ID == i], center = TRUE, scale = FALSE)
for (i in levels(a.dat$ID))
a.dat$total.dist.log10_s.mean[a.dat$ID == i] <- mean(a.dat$total.dist.log10[a.dat$ID == i])

5.2. Spring model
a) modelling
mod <- lmer(t.speed.log10 ~ total.dist.log10_ws.center +
 total.dist.log10_s.mean +
 (total.dist.log10_ws.center | ID),
 s.dat,
 REML = TRUE)

b) assessing model’s assumptions

compare plot to simulated data
par(mar=rep(4,4))
compareqqnorm(mod)
[1] 3
#
--> no violation

autocorrelation
par(mfrow=c(1,2), mar=rep(4,4))
acf(resid(mod))
acf(resid(mod), type="p")
residual plots

t.cex <- 1
par(mfrow=c(2,3), mar=rep(4,4), mgp=c(3,1,0))

Tukey-Ascombe plot: Residuals over predicted values
scatter.smooth(fitted(mod), resid(mod), main="Tukey-Ascombe Plot", cex=t.cex)
abline(h=0, lty=2) # residuals vs. fitted

normal QQ plot of the residuals
qqnorm(resid(mod), main="Normal QQ plot, residuals", cex.main=t.cex) # qq of residuals
qqline(resid(mod))

square-root of the absolute values of the residuals versus fitted values
scatter.smooth(fitted(mod), sqrt(abs(resid(mod))), main="Scale-Location") # res. var vs. fitted

several QQ plots of random slope and intercept
qqnorm(ranef(mod)$ID[,2], main="")
qqline(ranef(mod)$ID[,2])
title(main="Normal QQ plot of the random slope \per species (total.dist.log10_s_ws.center)",

--> no violation
\texttt{qqnorm(ranef(mod)\$ID[,1], main="")}
\texttt{qqline(ranef(mod)\$ID[,1])}
\texttt{title(main="Normal QQ plot of the random intercept per species (total.dist.log10_s_ws.center)", cex=t.cex)}
\texttt{plot.new()}

--> no violation

c) drawing conclusions
nsim <- 5000
\texttt{set.seed(0470) \# specify the seed (starting value for random generator)}
bsim <- \texttt{sim(mod, n.sim=nsim)}
\texttt{colnames(bsim@fixef) <- names(fixef(mod))}
r.fixef <- \texttt{round(apply(bsim@fixef, 2, quantile, prob=c(0.025,0.5,0.975)),2)}
r.fixef
number of individuals considered
length(mod@resp$y)

[1] 180

model output
mod

Linear mixed model fit by REML ['lmerMod']
Formula:
t.speed.log10 ~ total.dist.log10_ws.center + total.dist.log10_s.mean +
(total.dist.log10_ws.center | ID)
Data: s.dat
REML criterion at convergence: -151.9979
Random effects:
Groups Name Std.Dev. Corr
ID (Intercept) 0.19097
total.dist.log10_ws.center 0.04688 1.00
Residual 0.13267
Number of obs: 180, groups: ID, 22
Fixed Effects:
(Intercept) total.dist.log10_ws.center
-0.8879 0.7298
total.dist.log10_s.mean
0.8210

marginal and conditional R-square
r.squaredGLMM(mod)

[1] 0.3877163 0.8007718

5.3. Autumn model

a) modelling
mod <- lmer(t.speed.log10 ~ total.dist.log10_ws.center +
 total.dist.log10_s.mean +
 (total.dist.log10_ws.center | ID),
 a.dat,
 lmerControl(optimizer = 'optimx', optCtrl=list(method='L-BFGS-B')),
 REML = TRUE)

b) assessing model's assumptions

compare plot to simulated data
```r
par(mar=rep(4,4))
compareqqnorm(mod)

## [1] 3

# --> no violation

# autocorrelation
par(mfrow=c(1,2), mar=rep(4,4))
acf(resid(mod))
acf(resid(mod),type="p")
```
residual plots

```r
t.cex <- 1
par(mfrow=c(2,3), mar=rep(4,4), mgp=c(3,1,0))

# Tukey-Ascombe plot: Residuals over predicted values
scatter.smooth(fitted(mod), resid(mod), main="Tukey-Anscombe Plot", cex=t.cex)
abline(h=0, lty=2) # residuals vs. fitted

# normal QQ plot of the residuals
qqnorm(resid(mod), main="Normal QQ plot, residuals", cex.main=t.cex) # qq of residuals
qqline(resid(mod))

# square-root of the absolute values of the residuals versus fitted values
scatter.smooth(fitted(mod), sqrt(abs(resid(mod))), main="Scale-Location") # res. var vs. fitted

# several QQ plots of random slope and intercept
qqnorm(ranef(mod)$ID[,2], main="")
qqline(ranef(mod)$ID[,2])
title(main="Normal QQ plot of the random slope \nper species (total.dist.log10_s ws.center)",

# --> no violation
```

Notes:
- The code snippet demonstrates various diagnostic plots used in regression analysis to check model assumptions.
- The plots include:
 - ACF and Partial ACF for residual plots.
 - Scatter plots of residuals versus fitted values.
 - Normal QQ plots for both residuals and random slopes/intercepts.
- The code uses base R functions such as `scatter.smooth`, `qqnorm`, and `qqline`.
- The `par` function is used to set the layout for multiple plots.
- The `title` function is used to add a title to the plots.
- The `ranef` function extracts random effects from a fitted model, and `ID` likely refers to a grouping variable.

References:

Explanation:
- The code exemplifies how to diagnose a regression model using graphical methods.
- The plots help to assess whether the assumptions of linearity, homoscedasticity, and normality are met.
- The absence of violation indicates that the model fits the data well within the specified assumptions.

Further reading:
cex=t.cex)

qqnorm(ranef(mod)$ID[,1], main="")
qqline(ranef(mod)$ID[,1])
title(main="Normal QQ plot of the random intercept per species (total.dist.log10_s_center)",
cex=t.cex)
plot.new()

--> no violation

c) drawing conclusions
nsim <- 5000
set.seed(0470) # specify the seed (starting value for random generator)
bsim <- sim(mod, n.sim=nsim)
colnames(bsim@fixef) <- names(fixef(mod))
r.fixef <- round(apply(bsim@fixef, 2, quantile, prob=c(0.025,0.5,0.975)),2)
r.fixef
(Intercept) total.dist.log10_ws.center total.dist.log10_s.mean
2.5% -0.59 0.72 -0.02
50% 0.74 0.96 0.34
97.5% 2.07 1.19 0.70

number of individuals considered

`length(mod@resp$y)`

```r
## [1] 245
```

model output

`mod`

Linear mixed model fit by REML ['lmerMod']

Formula:

```r
t.speed.log10 ~ total.dist.log10_ws.center + total.dist.log10_s.mean + 
(total.dist.log10_ws.center | ID)
```

Data: a.dat

REML criterion at convergence: -206.4836

Random effects:

```r
Groups   Name               Std.Dev. Corr
ID       (Intercept)       0.2144
          total.dist.log10_ws.center 0.1559 -0.23
Residual                                        0.1346
```

Number of obs: 245, groups: ID, 24

Fixed Effects:

```r
(Intercept) total.dist.log10_ws.center  
0.7280 0.9575
```

total.dist.log10_s.mean

```r
0.3407
```

marginal and conditional R-square

```r
r.squaredGLMM(mod)
```

```r
## R2m  R2c
## [1,] 0.1796935 0.7689762
```

6. Modelling variation in total speed of migration with “lean” body mass

6.1 Generating variables

```r
bm.dat <- ddply(dat, c("ID","breed.lat","season"), summarize,
    mean.t.speed = round(mean(t.speed, na.rm=TRUE),2),
    mean.t.speed_log10 = round(log10(mean(t.speed, na.rm=TRUE)),2),
    se.t.speed = sd(t.speed, na.rm=TRUE)/sqrt(length(which(lis.na(t.speed)))),
    bodymass = round(mean(as.numeric(bodymass), na.rm=T),2),
    bodymass_log10 = round(log10(mean(as.numeric(bodymass), na.rm=T)),2),
    t.col = min(t.col),
    family = unique(family))
```
6.2 Modelling

a) modeling
mod <- lmer(mean.t.speed_log10 ~ bm_min_log10 + season +
(1|family),
bm.dat,
REML=FALSE,
weights=ifelse(is.na(bm.dat$se.t.speed), 1/mean(bm.dat$se.t.speed, na.rm=T), 1/bm.dat$se.t.speed))

This model was initially run with the two-way interaction "bodymass_log10:season". The corresponding
95% CrI (-0.16, 0.347) included zero and was therefore removed.

b) assessing model’s assumptions
compare plot to simulated data
par(mar=rep(4,4))
compareqqnorm(mod)
[1] 8

--> no violation

autocorrelation
par(mfrow=c(1, 2), mar=rep(4, 4))
acf(resid(mod))
acf(resid(mod), type="p")

residual plots

Tukey-Ascombe plot: Residuals over predicted values
scatter.smooth(fitted(mod), resid(mod), main="Tukey-Ascombe Plot", cex=t.cex)
abline(h=0, lty=2) # residuals vs. fitted

normal QQ plot of the residuals
qqnorm(resid(mod), main="Normal QQ plot, residuals", cex.main=t.cex) # qq of residuals
qqline(resid(mod))

square-root of the absolute values of the residuals versus fitted values
scatter.smooth(fitted(mod), sqrt(abs(resid(mod))), main = "Scale-Location") # res. var vs. fitted

several QQ plots of random intercept
qqnorm(ranef(mod)$family[,1], main="")
qqline(ranef(mod)$family[,1])
title(main="Normal QQ plot of the random intercept \n per family",
cex=t.cex)

--> no violation

c) drawing conclusions
nsim <- 5000
set.seed(0470) # specify the seed (starting value for your random generator)
bsim <- sim(mod, n.sim=nsim)
colnames(bsim@fixef) <- names(fixef(mod))
r.fixef <- round(apply(bsim@fixef, 2, quantile, prob=c(0.025,0.5,0.975)),2)
r.fixef

(Intercept) bm_min_log10 seasonspr
2.5% 1.34 -0.15 0.11
50% 1.75 0.13 0.18
97.5% 2.15 0.41 0.26

number of individuals considered
length(mod@resp$y)

[1] 66

model output
mod

Linear mixed model fit by maximum likelihood ['lmerMod']
Formula: mean.t.speed_log10 ~ bm_min_log10 + season + (1 | family)
Data: bm.dat
Weights:
ifelse(is.na(bm.dat$se.t.speed), 1/mean(bm.dat$se.t.speed, na.rm = T),
1/bm.dat$se.t.speed)
AIC BIC logLik deviance df.resid
Random effects:
Groups Name Std.Dev.
family (Intercept) 0.22457
Residual 0.04426
Number of obs: 66, groups: family, 16
Fixed Effects:
(Intercept) bm_min_log10 seasonspr
1.7513 0.1239 0.1845

marginal and conditional R-square
r.squaredGLMM(mod)

[1] 0.165578 0.9687947

7. Controlling for shared ancestry

species as tips in the phylogeny would involve arbitrary assumptions about the variation between populations.

7.1 Spring
reading tree data
tree.dat <- read.tree("species list songbirds body mass.nwk.txt")

dropping species for which no spring data are available
tree.dat.1 <- drop.tip(tree.dat, "Saxicola_torquata")
tree.dat.2 <- drop.tip(tree.dat.1, "Phylloscopus_trochilus")

adjusting data set
dat$ID.a <- as.character(dat$ID)
give the two northern wheatear populations the same name
dat$ID.a[dat$ID.a=="northern wheatear AK"] <- "northern wheatear"
dat$ID.a[dat$ID.a=="northern wheatear SE"] <- "northern wheatear"
dat$ID.a <- as.factor(dat$ID.a)

generating data for spring
s.bm <- ddply(dat[dat$season=="spr"], c("ID.a"), summarize,
 n = length(na.omit(t.speed)),
 mean.t.speed = round(mean(t.speed, na.rm=TRUE),2),
 mean.t.speed_log10 = round(log10(mean(t.speed, na.rm=TRUE)),2),
 se.t.speed = sd(t.speed, na.rm=TRUE)/sqrt(length(which(!is.na(t.speed)))),
 var.t.speed = var(t.speed, na.rm=TRUE)/sqrt(length(which(!is.na(t.speed)))),
 bodymass = round(mean(as.numeric(bodymass), na.rm=T),2),
 bodymass_log10 = round(log10(mean(as.numeric(bodymass), na.rm=T)),2),
 t.col = min(t.col),
 family = unique(family))

including scientific names
s.bm$snames <- c("Hirundo_rustica","Setophagastriata","Sturnusphilippines","Calcariusornatus","Cuculuscanorus","Tyrannus_tyrannus","Coraciasgarrulus","Vermivora_chrysoptera","Acrocephalus_arundinaceus","Carduelis_cannabina","Oenanthe_oeanthe","Emberiza_hortulana","Ficedula_hypoica","Lanius_collurio","Vireo_olivaceus","Luscinia_svecica","Tyrannus_forficatus","Ficedula_semitorquata","Plectrophenaxnivalis","Catharus_ustulatus","Anthus_campestris","Catharus_fusescens","Tyrannus_verticalis","Hylocichla_mustelina")

give row names
row.names(s.bm) <- s.bm$snames

order data as in tree data
t.order <- match(tree.dat.2$tip.label,row.names(s.bm))
s.bm <- s.bm[t.order,]

modelling by expected covariance under a Brownian model
modB1 <- gls(mean.t.speed_log10 ~ bodymass_log10,
 data = s.bm,
correlation = corBrownian(value = 1, phy = tree.dat.2),
control = glsControl(opt = "optim"),
method = "ML")

residual analysis
mod <- modB1
par(mar = rep(5, 4))
plot(mod, resid(.), type = "n") ~ fitted(.), main = "Normalized Residuals v Fitted Values",
 abline = c(0, 0), cex = 1.5, pch = 19, cex.axis = 1.5, cex.lab = 1.5)

res <- resid(mod, type = "n"); qqnorm(res, cex = 1.5, pch = 19, cex.axis = 1.5, cex.lab = 1.5); qqline(res)
Generalized least squares fit by maximum likelihood

Model: mean.t.speed_log10 \sim \text{bodymass_log10}

Data: s.bm

AIC BIC logLik
23.11949 26.65365 -8.559743

Correlation Structure: corBrownian
Formula: \sim 1
Parameter estimate(s):
numeric(0)

Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>Std.Error</th>
<th>t-value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>1.0349</td>
<td>0.7361</td>
<td>1.4059</td>
<td>0.1737</td>
</tr>
<tr>
<td>bodymass_log10</td>
<td>0.6560</td>
<td>0.3839</td>
<td>1.7084</td>
<td>0.1016</td>
</tr>
</tbody>
</table>

Correlation:

(Ind) -0.916

Standardized residuals:

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Q1</th>
<th>Med</th>
<th>Q3</th>
<th>Max</th>
</tr>
</thead>
</table>

--> no violation

drawing conclusions

summary(mod)

Generalized least squares fit by maximum likelihood
Model: mean.t.speed_log10 \sim \text{bodymass_log10}
Data: s.bm
AIC BIC logLik
23.11949 26.65365 -8.559743
##
Correlation Structure: corBrownian
Formula: ~1
Parameter estimate(s):
numeric(0)
##
Coefficients:
##
| | Value | Std.Error | t-value | p-value |
|----------------------|--------|-----------|---------|---------|
| (Intercept) | 1.0349 | 0.7361 | 1.4059 | 0.1737 |
| bodymass_log10 | 0.6560 | 0.3839 | 1.7084 | 0.1016 |
##
Correlation:
##
| | (Ind) |
|------------------|-------|
| (Ind) | -0.916|
##
Standardized residuals:
##
| | Min | Q1 | Med | Q3 | Max |
|-----|-----|--------|--------|--------|--------|
The linear model fit using generalized least square and controlling for shared ancestry does not provide a different effect of body mass on total speed of migration than detailed in 7.2.

7.2 Autumn

reading tree data
tree.dat <- read.tree("species list songbirds body mass.nwk.txt")

dropping species for which no autumn data are available
tree.dat.1 <- drop.tip(tree.dat, "Hylocichla_mustelina")

adjusting data set
dat$ID.a <- as.character(dat$ID)

giving the two northern wheatear populations the same name
dat$ID.a[dat$ID.a=="northern wheatear AK"] <- "northern wheatear"
dat$ID.a[dat$ID.a=="northern wheatear SE"] <- "northern wheatear"

dat$ID.a <- as.factor(dat$ID.a)

excluding wood thrush, because there is no estimate for total speed of migration
dat <- dat[dat$ID.a!="wood thrush",]
dat$ID.a <- as.factor(dat$ID.a)

generating data for autumn
a.bm <- ddply(dat[dat$season == "aut"], c("ID.a"), summarize,
 n = length(na.omit(t.speed)),
 mean.t.speed = round(mean(t.speed, na.rm=TRUE),2),
 mean.t.speed_log10 = round(log10(mean(t.speed, na.rm=TRUE)),2),
 se.t.speed = sd(t.speed, na.rm=TRUE)/sqrt(length(which(!is.na(t.speed)))),
 var.t.speed = var(t.speed, na.rm=TRUE)/sqrt(length(which(!is.na(t.speed)))),
 bodymass = round(mean(as.numeric(bodymass), na.rm=T),2),
 bodymass_log10 = round(log10(mean(as.numeric(bodymass), na.rm=T)),2),
 t.col = min(t.col),
 family = unique(family))

including scientific names

give row names
row.names(a.bm) <- a.bm$snames
order data as in tree data

t.order <- match(tree.dat$tip.label,row.names(a.bm))
a.bm <- a.bm[t.order,]

modelling by expected covariance under a Brownian model
modB1 <- gls(mean.t.speed_log10 ~ bodymass_log10,
 data = a.bm,
 correlation = corBrownian(value = 1, phy = tree.dat.1),
 control=glsControl(opt = "optim"),
 method = "ML")

residual anaylsis
mod <- modB1
par(mar=rep(5,4))
plot(mod, resid(.), type="n", fitted(., main="Normalized Residuals v Fitted Values",
 abline=c(0,0), cex=1.5, pch=19, cex.axis=1.5, cex.lab=1.5)

res <- resid(mod, type="n"); qqnorm(res, cex=1.5, pch=19, cex.axis=1.5, cex.lab=1.5); qqline(res)
drawing conclusions

summary

```r
## Generalized least squares fit by maximum likelihood
## Model: mean.t.speed_log10 ~ bodymass_log10
## Data: a.bm
##    AIC      BIC    logLik
##  16.49155 20.14818 -5.245776
##
## Correlation Structure: corBrownian
##  Formula: ~1
##  Parameter estimate(s):
##    numeric(0)
##
## Coefficients:
##             Value Std.Error  t-value p-value
## (Intercept) 1.2039821 0.6115501 1.968738  0.0611
## bodymass_log10 0.4615032 0.3257711 1.416649  0.1700
##
## Correlation:
##    (Intr)
## bodymass_log10 -0.915
##
## Standardized residuals:
##    Min     Q1    Med     Q3    Max
```
The linear model fit using generalized least square and controlling for shared ancestry does not provide a different effect of body mass on total speed of migration than detailed in 6.2.