Additional file 2: Cs1 requirements to take large negative values

Rocio Joo

The Coefficient of Sociality (Cs) compares the mean distance between simultaneous pairs of fixes (D_O) against the mean distance between all permutations of all fixes (D_E).

$$
Cs = \frac{D_E - D_O}{D_E + D_O} = 1 - 2 \frac{D_O}{D_E + D_O},
$$

(1)

where

$$
D_O = \left(\sum_{i=1}^{T} d_{A,B}^i \right) / T,
$$

and

$$
D_E = \left(\sum_{i=1}^{T} \sum_{t_1=1}^{T} d_{A,B}^{i_1,i_2} / T^2.
$$

Let d_{ij} be the distance between the locations of A at time i and B at time j. Then, D_O and D_E can be expressed as in equations 2 and 4.

$$
D_O = \sum_{i_1=1}^{T} d_{ii} / T
$$

(2)

$$
D_O = \sum_{i,j \in [1,T]} \frac{d_{ij}}{(T^2 - T)}
$$

(3)
\[D_E = \frac{D_O}{T} + \frac{(T-1)}{T}D_O \] (4)

where \(D_O \) is defined in equation 3 and corresponds to the average distance between the exclusively permuted points without taking into account the simultaneous fixes. Using those equations, we can replace \(D_O \) and \(D_E \) in equation 1 when \(Cs1 = -\alpha \) (\(\alpha > 0 \)) and obtain:

\[
\frac{D_O}{D_O} = \frac{T(1-\alpha)}{(T-1)(1+\alpha)} - \frac{1}{T-1} \] (5)

It means that, for instance, for \(Cs1 = -0.5 \) and when \(T \) is large, \(D_O \) would have to be approximately a third of \(D_O \), thus a third of the average distance computed only at simultaneous fixes. Fig. 1 shows the values of \(D_O/D_O \) ratios needed to attain the whole range of \(Cs \) negative values. Most of those scenarios are very unlikely.
Figure 1: Computed ratios D_O/D_O needed for obtaining the Cs1 negative values (x-axis, from −0.99 to 0) for each series length T (y-axis, from 2 to 250). The blank spaces correspond to infeasible situations.