Additional file 1.

Supplementary material for Marrotte et al., Multi-species genetic connectivity in a terrestrial habitat network.

Appendix 1. Description of cost values for different land cover elements in a study of multi-species genetic connectivity in Ontario, Canada. Cost estimates followed the methodology of Koen et al. [11].

<table>
<thead>
<tr>
<th>Data source</th>
<th>Publisher</th>
<th>Land cover</th>
<th>Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1Built-up Area</td>
<td>OMNRF, 2013</td>
<td>Urban - (Population ≥ 1000)</td>
<td>1000</td>
</tr>
<tr>
<td>2Ontario Hydro Network (OHN), 500k Waterbody</td>
<td>OMNRF, 2011</td>
<td>Water Bodies (Area ≥ 100m2)</td>
<td>1000</td>
</tr>
<tr>
<td>3Ontario Road Network (ORN)</td>
<td>OMNRF, 2010</td>
<td>Arterial</td>
<td>1000</td>
</tr>
<tr>
<td>3Ontario Road Network (ORN)</td>
<td>OMNRF, 2010</td>
<td>Collector</td>
<td>100</td>
</tr>
<tr>
<td>3Ontario Road Network (ORN)</td>
<td>OMNRF, 2010</td>
<td>Expressway / Highway</td>
<td>1000</td>
</tr>
<tr>
<td>3Ontario Road Network (ORN)</td>
<td>OMNRF, 2010</td>
<td>Local / Strata</td>
<td>100</td>
</tr>
<tr>
<td>3Ontario Road Network (ORN)</td>
<td>OMNRF, 2010</td>
<td>Local / Street</td>
<td>100</td>
</tr>
<tr>
<td>3Ontario Road Network (ORN)</td>
<td>OMNRF, 2010</td>
<td>Local / Unknown</td>
<td>100</td>
</tr>
<tr>
<td>3Ontario Road Network (ORN)</td>
<td>OMNRF, 2010</td>
<td>Ramp</td>
<td>1000</td>
</tr>
<tr>
<td>3Ontario Road Network (ORN)</td>
<td>OMNRF, 2010</td>
<td>Resource / Recreation</td>
<td>100</td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td>--------------</td>
<td>-----</td>
</tr>
<tr>
<td>Data Source</td>
<td>Year</td>
<td>Description</td>
<td>Code</td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Spectranalysis Inc., 2004</td>
<td></td>
<td>Swamp - coniferous</td>
<td>10</td>
</tr>
<tr>
<td>Spectranalysis Inc., 2004</td>
<td></td>
<td>Fen - treed</td>
<td>10</td>
</tr>
<tr>
<td>Spectranalysis Inc., 2004</td>
<td></td>
<td>Bog - treed</td>
<td>10</td>
</tr>
<tr>
<td>Spectranalysis Inc., 2004</td>
<td></td>
<td>Agriculture - Pasture / abandoned fields</td>
<td>100</td>
</tr>
<tr>
<td>OMNRF, 1998</td>
<td></td>
<td>Coastal Mudflats</td>
<td>10</td>
</tr>
<tr>
<td>OMNRF, 1998</td>
<td></td>
<td>Supertidal Marsh</td>
<td>10</td>
</tr>
<tr>
<td>OMNRF, 1998</td>
<td></td>
<td>Deciduous Swamp</td>
<td>10</td>
</tr>
<tr>
<td>OMNRF, 1998</td>
<td></td>
<td>Open Fen</td>
<td>10</td>
</tr>
<tr>
<td>OMNRF, 1998</td>
<td></td>
<td>Open Bog</td>
<td>10</td>
</tr>
<tr>
<td>OMNRF, 1998</td>
<td></td>
<td>Tundra Heath</td>
<td>10</td>
</tr>
<tr>
<td>OMNRF, 1998</td>
<td></td>
<td>Dense Coniferous Forest</td>
<td>10</td>
</tr>
<tr>
<td>OMNRF, 1998</td>
<td></td>
<td>Mixed Forest – mainly Deciduous</td>
<td>10</td>
</tr>
<tr>
<td>OMNRF, 1998</td>
<td></td>
<td>Sparse Coniferous Forest</td>
<td>10</td>
</tr>
<tr>
<td>OMNRF, 1998</td>
<td></td>
<td>Recent Cutovers (now >10yrs of age)</td>
<td>10</td>
</tr>
<tr>
<td>Description</td>
<td>Cost Surface Development Overlay Priority</td>
<td>Area of Inclusion</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Old Cuts and Burns (>10yrs of age)</td>
<td>10</td>
<td>Small undifferentiated areas</td>
<td></td>
</tr>
<tr>
<td>Bedrock Outcrop</td>
<td>10</td>
<td>Small undifferentiated areas</td>
<td></td>
</tr>
<tr>
<td>Settlement and Developed Land</td>
<td>1000</td>
<td>Small undifferentiated areas</td>
<td></td>
</tr>
<tr>
<td>Pasture and Abandoned Fields</td>
<td>100</td>
<td>Small undifferentiated areas</td>
<td></td>
</tr>
<tr>
<td>Cropland</td>
<td>100</td>
<td>Small undifferentiated areas</td>
<td></td>
</tr>
<tr>
<td>Alvar</td>
<td>10</td>
<td>Small undifferentiated areas</td>
<td></td>
</tr>
</tbody>
</table>

*Superscript numbers represent cost surface development overlay priority. Priority 3 land cover data was only included in small undifferentiated areas.
Appendix 2. Correlation matrix for all variables considered in a multi-species genetic connectivity study in Ontario, Canada.

| | Sample Size | X | Y | ∑ of Edge Wt | ∑ of Inv Edge Wt | # of Edges | Avg Edge Wt | Avg Inv Edge Wt | Mean Cost (6 km) | Mean Cost (20 km) | Mean Cost (120 km) | Mean Current (6 km) | Mean Current (20 km) | Mean Current (120 km) | STD Current (6 km) | STD Current (20 km) | STD Current (120 km) | STD Cost (6 km) | STD Cost (20 km) |
|------------------|-------------|---------|---------|--------------|------------------|------------|-------------|-----------------|-----------------|------------------|---------------------|---------------------|---------------------|---------------------|-------------------|-----------------|-----------------|
| Sample Size | | | | | | | | | | | | | | | | | |
| X | -0.055 | | | | | | | | | | | | | | | | |
| Y | 0.049 | -0.837 | | -0.254 | 0.006 | -0.476 | 0.231 | | | | | | | | | | |
| ∑ of Edge Wt | | | | | | | | | | | | | | | | | |
| ∑ of Inv Edge Wt | | | | | | | | | | | | | | | | | |
| # of Edges | -0.196 | -0.133 | -0.476 | 0.096 | 0.719 | 0.677 | | | | | | | | | | | |
| Avg Edge Wt | -0.239 | 0.498 | -0.648 | 0.810 | -0.542 | 0.213 | | | | | | | | | | | |
| Avg Inv Edge Wt | 0.245 | -0.571 | 0.721 | 0.696 | -0.326 | 0.944 | | | | | | | | | | | |
| Mean Cost (6 km) | 0.186 | 0.222 | -0.400 | 0.055 | -0.326 | 0.237 | | | | | | | | | | | |

Sample Size

X

Y

∑ of Edge Wt

∑ of Inv Edge Wt

of Edges

Avg Edge Wt

Avg Inv Edge Wt

Mean Cost (6 km)

Mean Cost (20 km)

Mean Cost (120 km)

Mean Current (6 km)

Mean Current (20 km)

Mean Current (120 km)

STD Current (6 km)

STD Current (20 km)

STD Current (120 km)

STD Cost (6 km)

STD Cost (20 km)
<table>
<thead>
<tr>
<th>Mean Cost (20 km)</th>
<th>0.105</th>
<th>0.178</th>
<th>-0.358</th>
<th>0.064</th>
<th>-0.240</th>
<th>-0.124</th>
<th>0.220</th>
<th>-0.228</th>
<th>0.627</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Cost (120 km)</td>
<td>0.003</td>
<td>0.037</td>
<td>-0.344</td>
<td>0.118</td>
<td>-0.352</td>
<td>-0.134</td>
<td>0.330</td>
<td>-0.383</td>
<td>0.360</td>
</tr>
<tr>
<td>Mean Current (6 km)</td>
<td>-0.136</td>
<td>-0.001</td>
<td>-0.575</td>
<td>0.163</td>
<td>-0.101</td>
<td>0.130</td>
<td>0.166</td>
<td>0.383</td>
<td>0.368</td>
</tr>
<tr>
<td>Mean Current (20 km)</td>
<td>-0.065</td>
<td>-0.021</td>
<td>-0.327</td>
<td>0.280</td>
<td>-0.112</td>
<td>0.112</td>
<td>0.321</td>
<td>0.383</td>
<td>0.560</td>
</tr>
<tr>
<td>Mean Current (120 km)</td>
<td>-0.015</td>
<td>-0.021</td>
<td>-0.180</td>
<td>0.280</td>
<td>-0.101</td>
<td>0.130</td>
<td>0.166</td>
<td>0.383</td>
<td>0.368</td>
</tr>
<tr>
<td>STD Cost (6 km)</td>
<td>0.108</td>
<td>0.143</td>
<td>-0.399</td>
<td>0.071</td>
<td>0.094</td>
<td>0.097</td>
<td>0.155</td>
<td>0.173</td>
<td>0.46</td>
</tr>
<tr>
<td>STD Cost (20 km)</td>
<td>0.099</td>
<td>0.143</td>
<td>-0.399</td>
<td>0.071</td>
<td>0.094</td>
<td>0.097</td>
<td>0.155</td>
<td>0.173</td>
<td>0.46</td>
</tr>
<tr>
<td>STD Cost (120 km)</td>
<td>0.002</td>
<td>0.002</td>
<td>-0.289</td>
<td>0.082</td>
<td>-0.294</td>
<td>-0.294</td>
<td>-0.270</td>
<td>-0.089</td>
<td>-0.034</td>
</tr>
</tbody>
</table>

STD Cost (6 km):
- 0.108
- 0.143
- 0.399
- 0.071
- 0.094
- 0.097
- 0.155
- 0.173
- 0.46

STD Cost (20 km):
- 0.099
- 0.143
- 0.399
- 0.071
- 0.094
- 0.097
- 0.155
- 0.173
- 0.46

STD Cost (120 km):
- 0.002
- 0.002
- 0.289
- 0.082
- 0.294
- 0.294
- 0.270
- 0.089
- 0.034
Appendix 3. Description of data from each location sampled for four different species in a multi-species genetic connectivity study in Ontario, Canada.

<table>
<thead>
<tr>
<th>Species</th>
<th>Node ID</th>
<th>X</th>
<th>Y</th>
<th>Sample Size</th>
<th>Avg Edge Wt</th>
<th>Avg Inv Edge Wt</th>
<th>Mean Cost 6km Buffer</th>
<th>Mean Cost 20 km Buffer</th>
<th>Mean Cost 120 km Buffer</th>
<th>Mean Cost 6km Buffer</th>
<th>Mean Cost 20 km Buffer</th>
<th>Mean Cost 120 km Buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fisher</td>
<td>F1</td>
<td>1739622</td>
<td>12011268</td>
<td>20</td>
<td>10.130</td>
<td>0.100</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F2</td>
<td>1445630</td>
<td>12133088</td>
<td>20</td>
<td>4.138</td>
<td>0.245</td>
<td>122.4</td>
<td>163.8</td>
<td>155.9</td>
<td>1.579</td>
<td>0.317</td>
<td>0.255</td>
</tr>
<tr>
<td></td>
<td>F3</td>
<td>1533340</td>
<td>12050250</td>
<td>15</td>
<td>7.189</td>
<td>0.141</td>
<td>55.9</td>
<td>126.1</td>
<td>133.6</td>
<td>0.789</td>
<td>0.405</td>
<td>0.046</td>
</tr>
<tr>
<td></td>
<td>F4</td>
<td>1419389</td>
<td>12051416</td>
<td>24</td>
<td>4.238</td>
<td>0.243</td>
<td>264.3</td>
<td>175.7</td>
<td>210.8</td>
<td>0.075</td>
<td>0.222</td>
<td>-0.013</td>
</tr>
<tr>
<td></td>
<td>F5</td>
<td>1467476</td>
<td>12046021</td>
<td>23</td>
<td>4.505</td>
<td>0.227</td>
<td>137.8</td>
<td>151.6</td>
<td>168.2</td>
<td>0.573</td>
<td>0.156</td>
<td>0.032</td>
</tr>
<tr>
<td></td>
<td>F6</td>
<td>1303506</td>
<td>12213490</td>
<td>20</td>
<td>4.459</td>
<td>0.231</td>
<td>114.2</td>
<td>111.7</td>
<td>215.9</td>
<td>-0.187</td>
<td>-0.335</td>
<td>-0.127</td>
</tr>
<tr>
<td></td>
<td>F7</td>
<td>1497090</td>
<td>12013919</td>
<td>6</td>
<td>8.987</td>
<td>0.114</td>
<td>386.2</td>
<td>155.9</td>
<td>157.8</td>
<td>-0.344</td>
<td>-0.118</td>
<td>-0.060</td>
</tr>
<tr>
<td></td>
<td>F8</td>
<td>1286463</td>
<td>12156737</td>
<td>26</td>
<td>5.746</td>
<td>0.180</td>
<td>17.3</td>
<td>83.3</td>
<td>175.5</td>
<td>0.279</td>
<td>0.219</td>
<td>0.095</td>
</tr>
<tr>
<td></td>
<td>F9</td>
<td>1561398</td>
<td>12105898</td>
<td>16</td>
<td>4.965</td>
<td>0.202</td>
<td>142.7</td>
<td>163.1</td>
<td>145.0</td>
<td>-0.105</td>
<td>-0.317</td>
<td>-0.197</td>
</tr>
<tr>
<td></td>
<td>F10</td>
<td>1313131</td>
<td>12133971</td>
<td>15</td>
<td>4.210</td>
<td>0.239</td>
<td>378.8</td>
<td>262.1</td>
<td>172.7</td>
<td>-0.574</td>
<td>-0.020</td>
<td>0.045</td>
</tr>
<tr>
<td></td>
<td>F11</td>
<td>1309879</td>
<td>12106002</td>
<td>6</td>
<td>6.477</td>
<td>0.169</td>
<td>176.4</td>
<td>213.4</td>
<td>195.7</td>
<td>0.088</td>
<td>-0.023</td>
<td>0.055</td>
</tr>
<tr>
<td></td>
<td>F12</td>
<td>1500689</td>
<td>12102156</td>
<td>19</td>
<td>5.007</td>
<td>0.204</td>
<td>65.1</td>
<td>125.3</td>
<td>138.5</td>
<td>-0.108</td>
<td>-0.197</td>
<td>0.021</td>
</tr>
<tr>
<td></td>
<td>F13</td>
<td>1332743</td>
<td>12072990</td>
<td>14</td>
<td>8.687</td>
<td>0.118</td>
<td>277.1</td>
<td>285.8</td>
<td>223.2</td>
<td>0.191</td>
<td>0.363</td>
<td>-0.024</td>
</tr>
<tr>
<td></td>
<td>F14</td>
<td>1595910</td>
<td>12080118</td>
<td>18</td>
<td>4.689</td>
<td>0.216</td>
<td>138.0</td>
<td>115.6</td>
<td>172.6</td>
<td>-0.371</td>
<td>-0.224</td>
<td>-0.091</td>
</tr>
<tr>
<td></td>
<td>F15</td>
<td>1594663</td>
<td>12102987</td>
<td>19</td>
<td>4.967</td>
<td>0.207</td>
<td>58.3</td>
<td>116.4</td>
<td>164.1</td>
<td>0.380</td>
<td>-0.021</td>
<td>-0.189</td>
</tr>
<tr>
<td></td>
<td>F16</td>
<td>1214171</td>
<td>12059184</td>
<td>25</td>
<td>8.096</td>
<td>0.127</td>
<td>183.2</td>
<td>81.5</td>
<td>115.3</td>
<td>0.991</td>
<td>1.697</td>
<td>1.276</td>
</tr>
<tr>
<td></td>
<td>F17</td>
<td>1650798</td>
<td>12033546</td>
<td>19</td>
<td>5.914</td>
<td>0.183</td>
<td>91.2</td>
<td>205.3</td>
<td>204.5</td>
<td>0.211</td>
<td>0.017</td>
<td>0.066</td>
</tr>
<tr>
<td></td>
<td>F18</td>
<td>1296197</td>
<td>12181004</td>
<td>19</td>
<td>4.095</td>
<td>0.249</td>
<td>143.8</td>
<td>168.3</td>
<td>185.5</td>
<td>-0.445</td>
<td>-0.096</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>F19</td>
<td>1513164</td>
<td>12149559</td>
<td>19</td>
<td>6.098</td>
<td>0.173</td>
<td>116.3</td>
<td>181.0</td>
<td>129.8</td>
<td>0.014</td>
<td>-0.194</td>
<td>-0.124</td>
</tr>
<tr>
<td></td>
<td>F20</td>
<td>1442571</td>
<td>12035753</td>
<td>20</td>
<td>4.112</td>
<td>0.247</td>
<td>131.2</td>
<td>99.5</td>
<td>180.2</td>
<td>0.222</td>
<td>0.303</td>
<td>-0.002</td>
</tr>
<tr>
<td></td>
<td>F21</td>
<td>1634857</td>
<td>12158264</td>
<td>18</td>
<td>6.361</td>
<td>0.168</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>F22</td>
<td>1540424</td>
<td>12011498</td>
<td>13</td>
<td>7.223</td>
<td>0.143</td>
<td>148.0</td>
<td>113.8</td>
<td>140.0</td>
<td>-0.331</td>
<td>-0.169</td>
<td>-0.052</td>
</tr>
<tr>
<td></td>
<td>F23</td>
<td>1563908</td>
<td>12044767</td>
<td>23</td>
<td>5.343</td>
<td>0.193</td>
<td>301.4</td>
<td>121.6</td>
<td>157.0</td>
<td>-0.187</td>
<td>0.351</td>
<td>-0.020</td>
</tr>
<tr>
<td></td>
<td>F24</td>
<td>1597829</td>
<td>12028458</td>
<td>29</td>
<td>5.215</td>
<td>0.196</td>
<td>351.1</td>
<td>299.7</td>
<td>189.6</td>
<td>0.027</td>
<td>0.035</td>
<td>-0.066</td>
</tr>
<tr>
<td></td>
<td>F25</td>
<td>1528965</td>
<td>12104651</td>
<td>17</td>
<td>5.876</td>
<td>0.176</td>
<td>66.2</td>
<td>91.0</td>
<td>141.6</td>
<td>-0.157</td>
<td>-0.155</td>
<td>-0.098</td>
</tr>
<tr>
<td></td>
<td>F26</td>
<td>1506108</td>
<td>12028673</td>
<td>26</td>
<td>5.977</td>
<td>0.171</td>
<td>93.5</td>
<td>62.8</td>
<td>147.3</td>
<td>0.408</td>
<td>0.357</td>
<td>-0.020</td>
</tr>
<tr>
<td>F27</td>
<td>1593416</td>
<td>12127105</td>
<td>22</td>
<td>4.689</td>
<td>0.215</td>
<td>160.0</td>
<td>169.1</td>
<td>154.6</td>
<td>-0.472</td>
<td>-0.568</td>
<td>-0.288</td>
<td></td>
</tr>
<tr>
<td>F28</td>
<td>1641234</td>
<td>12081781</td>
<td>18</td>
<td>4.535</td>
<td>0.223</td>
<td>70.4</td>
<td>90.9</td>
<td>186.4</td>
<td>0.585</td>
<td>0.377</td>
<td>-0.063</td>
<td></td>
</tr>
<tr>
<td>F29</td>
<td>1348173</td>
<td>12111161</td>
<td>22</td>
<td>4.755</td>
<td>0.219</td>
<td>76.9</td>
<td>114.5</td>
<td>200.8</td>
<td>0.276</td>
<td>0.197</td>
<td>-0.024</td>
<td></td>
</tr>
<tr>
<td>F30</td>
<td>1378827</td>
<td>12220481</td>
<td>14</td>
<td>6.896</td>
<td>0.152</td>
<td>79.2</td>
<td>72.9</td>
<td>182.3</td>
<td>1.139</td>
<td>1.156</td>
<td>0.169</td>
<td></td>
</tr>
<tr>
<td>F31</td>
<td>1376598</td>
<td>12024262</td>
<td>15</td>
<td>4.594</td>
<td>0.219</td>
<td>809.9</td>
<td>342.1</td>
<td>251.2</td>
<td>-1.080</td>
<td>-0.315</td>
<td>-0.027</td>
<td></td>
</tr>
<tr>
<td>F32</td>
<td>1673840</td>
<td>12066493</td>
<td>44</td>
<td>6.141</td>
<td>0.177</td>
<td>99.3</td>
<td>99.0</td>
<td>170.1</td>
<td>0.548</td>
<td>0.511</td>
<td>0.101</td>
<td></td>
</tr>
<tr>
<td>F33</td>
<td>1623354</td>
<td>12110888</td>
<td>20</td>
<td>4.301</td>
<td>0.233</td>
<td>129.0</td>
<td>139.2</td>
<td>179.0</td>
<td>-0.214</td>
<td>-0.297</td>
<td>-0.147</td>
<td></td>
</tr>
<tr>
<td>F34</td>
<td>1568051</td>
<td>12147895</td>
<td>18</td>
<td>4.997</td>
<td>0.201</td>
<td>119.8</td>
<td>152.6</td>
<td>146.5</td>
<td>-0.592</td>
<td>-0.396</td>
<td>-0.344</td>
<td></td>
</tr>
</tbody>
</table>

L1	1080606	12230197	18	4.290	0.233	194.8	156.6	156.5	-0.032	-0.088	-0.121
L2	1270773	12562168	23	4.197	0.243	242.7	159.6	76.5	-1.124	-0.648	-0.238
L3	1186138	12560719	27	3.431	0.294	42.9	86.5	71.2	0.519	0.352	-0.087
L4	1087993	12410014	23	3.555	0.283	81.2	86.5	92.2	-0.145	-0.282	-0.164
L5	1083299	12328081	22	3.872	0.264	79.9	98.8	120.2	-0.104	-0.021	-0.044
L6	3532327	12613973	24	4.598	0.224	48.1	87.1	241.4	0.108	0.045	0.109
L7	825677	12610039	35	3.723	0.272	98.4	110.6	127.9	0.134	0.257	0.028
L8	1190125	12331202	15	4.448	0.231	37.6	94.4	135.7	0.884	0.638	0.076
L9	985797	12603072	25	3.843	0.261	16.5	38.6	45.9	0.132	0.068	0.055
L10	983215	12507143	27	3.594	0.279	34.1	31.8	87.4	0.562	0.648	-0.078
L11	481908	12581819	35	3.847	0.265	68.0	129.8	216.8	0.141	0.161	-0.015
L12	1222231	12583756	20	3.629	0.276	73.9	61.7	57.7	0.098	0.256	0.082
L13	1071151	12583920	26	3.839	0.268	50.7	28.4	49.7	0.048	0.107	0.124
L14	1141818	12493607	32	3.115	0.323	14.3	33.1	47.3	-0.448	-0.371	0.069
L15	1080691	12483816	22	4.053	0.251	36.2	32.5	46.8	-0.074	-0.159	-0.064
L16	1285989	12421624	34	4.021	0.253	17.0	58.6	129.1	0.467	0.399	-0.122
L17	1277264	12358912	29	3.970	0.253	150.8	88.1	119.2	-0.477	-0.305	-0.179
L18	1345953	12211220	26	4.031	0.249	43.0	278.3	190.4	-0.401	-0.663	-0.002
L19	715754	12610416	13	4.347	0.235	62.4	50.5	325.9	0.213	0.185	-0.326
L20	320617	12775926	22	5.345	0.188	64.9	175.9	197.1	-0.240	-0.005	-0.002
L21	472510	12677654	13	5.512	0.182	72.1	126.1	192.1	0.282	0.025	0.078
L22	1003818	12251441	18	3.808	0.264	36.5	43.1	107.8	0.816	0.684	0.249
L23	1226981	12238141	27	3.771	0.272	32.1	78.5	160.4	-0.377	-0.425	0.000
L24	567015	12537094	30	3.716	0.270	171.6	185.0	161.7	0.143	0.052	0.051

Canada lynx
<table>
<thead>
<tr>
<th>L25</th>
<th>578319</th>
<th>12445973</th>
<th>15</th>
<th>4.464</th>
<th>0.228</th>
<th>57.6</th>
<th>59.8</th>
<th>149.2</th>
<th>0.686</th>
<th>0.671</th>
<th>0.082</th>
</tr>
</thead>
<tbody>
<tr>
<td>L26</td>
<td>1196149</td>
<td>12426963</td>
<td>39</td>
<td>3.539</td>
<td>0.288</td>
<td>36.7</td>
<td>149.1</td>
<td>93.4</td>
<td>0.874</td>
<td>0.407</td>
<td>0.247</td>
</tr>
<tr>
<td>L27</td>
<td>833475</td>
<td>12500732</td>
<td>27</td>
<td>3.384</td>
<td>0.297</td>
<td>268.2</td>
<td>47.2</td>
<td>102.7</td>
<td>-0.687</td>
<td>-0.240</td>
<td>-0.138</td>
</tr>
<tr>
<td>L28</td>
<td>942374</td>
<td>12402154</td>
<td>35</td>
<td>3.282</td>
<td>0.305</td>
<td>201.5</td>
<td>144.4</td>
<td>136.8</td>
<td>-0.317</td>
<td>-0.163</td>
<td>0.058</td>
</tr>
<tr>
<td>M1</td>
<td>645709</td>
<td>12504228</td>
<td>27</td>
<td>3.325</td>
<td>0.302</td>
<td>88.7</td>
<td>135.1</td>
<td>177.3</td>
<td>0.465</td>
<td>0.412</td>
<td>0.164</td>
</tr>
<tr>
<td>M2</td>
<td>307903</td>
<td>12765030</td>
<td>47</td>
<td>2.814</td>
<td>0.356</td>
<td>112.4</td>
<td>194.2</td>
<td>211.7</td>
<td>-0.138</td>
<td>-0.221</td>
<td>-0.018</td>
</tr>
<tr>
<td>M3</td>
<td>331965</td>
<td>12746408</td>
<td>22</td>
<td>2.942</td>
<td>0.343</td>
<td>283.3</td>
<td>166.1</td>
<td>203.1</td>
<td>-0.061</td>
<td>0.044</td>
<td>0.000</td>
</tr>
<tr>
<td>M4</td>
<td>1310577</td>
<td>12336337</td>
<td>23</td>
<td>3.579</td>
<td>0.287</td>
<td>22.4</td>
<td>93.9</td>
<td>147.1</td>
<td>0.276</td>
<td>0.053</td>
<td>-0.207</td>
</tr>
<tr>
<td>M5</td>
<td>1314998</td>
<td>12299047</td>
<td>23</td>
<td>4.480</td>
<td>0.225</td>
<td>130.8</td>
<td>208.7</td>
<td>189.4</td>
<td>-0.427</td>
<td>-0.350</td>
<td>-0.074</td>
</tr>
<tr>
<td>M6</td>
<td>772061</td>
<td>12564261</td>
<td>19</td>
<td>3.357</td>
<td>0.305</td>
<td>78.4</td>
<td>156.5</td>
<td>155.1</td>
<td>-0.033</td>
<td>0.099</td>
<td>-0.057</td>
</tr>
<tr>
<td>M7</td>
<td>799255</td>
<td>12559363</td>
<td>20</td>
<td>3.068</td>
<td>0.330</td>
<td>28.3</td>
<td>282.4</td>
<td>149.8</td>
<td>1.123</td>
<td>-0.190</td>
<td>-0.073</td>
</tr>
<tr>
<td>M8</td>
<td>790744</td>
<td>12472796</td>
<td>23</td>
<td>3.430</td>
<td>0.298</td>
<td>277.9</td>
<td>134.6</td>
<td>107.5</td>
<td>-0.472</td>
<td>0.127</td>
<td>-0.016</td>
</tr>
<tr>
<td>M9</td>
<td>870372</td>
<td>12479829</td>
<td>22</td>
<td>3.499</td>
<td>0.287</td>
<td>18.2</td>
<td>77.4</td>
<td>103.3</td>
<td>-0.312</td>
<td>-0.305</td>
<td>-0.153</td>
</tr>
<tr>
<td>M10</td>
<td>834988</td>
<td>12507045</td>
<td>22</td>
<td>3.559</td>
<td>0.281</td>
<td>27.5</td>
<td>79.3</td>
<td>104.7</td>
<td>-0.232</td>
<td>-0.405</td>
<td>-0.133</td>
</tr>
<tr>
<td>M11</td>
<td>911795</td>
<td>12523140</td>
<td>23</td>
<td>3.175</td>
<td>0.318</td>
<td>52.4</td>
<td>69.2</td>
<td>92.8</td>
<td>0.191</td>
<td>-0.038</td>
<td>-0.192</td>
</tr>
<tr>
<td>M12</td>
<td>930971</td>
<td>12563164</td>
<td>24</td>
<td>3.062</td>
<td>0.328</td>
<td>13.5</td>
<td>24.9</td>
<td>62.9</td>
<td>0.116</td>
<td>0.043</td>
<td>-0.055</td>
</tr>
<tr>
<td>M13</td>
<td>995659</td>
<td>12504126</td>
<td>22</td>
<td>3.608</td>
<td>0.279</td>
<td>40.8</td>
<td>72.3</td>
<td>80.9</td>
<td>0.630</td>
<td>0.324</td>
<td>-0.091</td>
</tr>
<tr>
<td>M14</td>
<td>1093430</td>
<td>12298965</td>
<td>23</td>
<td>3.935</td>
<td>0.261</td>
<td>122.5</td>
<td>118.2</td>
<td>136.4</td>
<td>0.276</td>
<td>0.137</td>
<td>-0.053</td>
</tr>
<tr>
<td>M15</td>
<td>1087158</td>
<td>12306606</td>
<td>22</td>
<td>3.775</td>
<td>0.272</td>
<td>107.5</td>
<td>143.9</td>
<td>131.9</td>
<td>-0.162</td>
<td>-0.144</td>
<td>-0.045</td>
</tr>
<tr>
<td>M16</td>
<td>1243724</td>
<td>12497029</td>
<td>25</td>
<td>3.509</td>
<td>0.303</td>
<td>24.6</td>
<td>45.3</td>
<td>100.0</td>
<td>0.286</td>
<td>0.155</td>
<td>-0.038</td>
</tr>
<tr>
<td>M17</td>
<td>1254122</td>
<td>12480710</td>
<td>21</td>
<td>3.514</td>
<td>0.289</td>
<td>82.4</td>
<td>94.2</td>
<td>115.5</td>
<td>-0.351</td>
<td>-0.195</td>
<td>-0.057</td>
</tr>
<tr>
<td>M18</td>
<td>1195369</td>
<td>12520878</td>
<td>27</td>
<td>3.400</td>
<td>0.300</td>
<td>54.8</td>
<td>77.6</td>
<td>64.7</td>
<td>1.018</td>
<td>0.567</td>
<td>0.049</td>
</tr>
<tr>
<td>M19</td>
<td>1288274</td>
<td>12348563</td>
<td>16</td>
<td>3.745</td>
<td>0.271</td>
<td>276.8</td>
<td>86.2</td>
<td>129.8</td>
<td>-0.403</td>
<td>-0.090</td>
<td>-0.202</td>
</tr>
<tr>
<td>M20</td>
<td>1330473</td>
<td>12368285</td>
<td>15</td>
<td>4.889</td>
<td>0.273</td>
<td>31.8</td>
<td>36.7</td>
<td>119.6</td>
<td>0.180</td>
<td>0.030</td>
<td>-0.244</td>
</tr>
<tr>
<td>M21</td>
<td>781645</td>
<td>12493991</td>
<td>25</td>
<td>3.533</td>
<td>0.285</td>
<td>133.6</td>
<td>110.6</td>
<td>125.9</td>
<td>0.524</td>
<td>0.359</td>
<td>-0.047</td>
</tr>
<tr>
<td>M22</td>
<td>1032093</td>
<td>12342170</td>
<td>16</td>
<td>4.237</td>
<td>0.238</td>
<td>45.1</td>
<td>104.6</td>
<td>116.5</td>
<td>0.704</td>
<td>0.106</td>
<td>-0.016</td>
</tr>
<tr>
<td>M23</td>
<td>1018022</td>
<td>12480744</td>
<td>21</td>
<td>3.323</td>
<td>0.309</td>
<td>111.4</td>
<td>63.4</td>
<td>77.9</td>
<td>-0.376</td>
<td>-0.311</td>
<td>-0.088</td>
</tr>
<tr>
<td>M24</td>
<td>768944</td>
<td>12541960</td>
<td>22</td>
<td>3.422</td>
<td>0.311</td>
<td>125.9</td>
<td>230.7</td>
<td>149.7</td>
<td>-0.716</td>
<td>-0.350</td>
<td>-0.065</td>
</tr>
<tr>
<td>M25</td>
<td>913677</td>
<td>12537056</td>
<td>24</td>
<td>3.615</td>
<td>0.281</td>
<td>51.0</td>
<td>72.2</td>
<td>85.4</td>
<td>-0.023</td>
<td>-0.067</td>
<td>-0.167</td>
</tr>
<tr>
<td>M26</td>
<td>1307631</td>
<td>12314745</td>
<td>26</td>
<td>3.904</td>
<td>0.259</td>
<td>88.8</td>
<td>211.0</td>
<td>175.6</td>
<td>-0.033</td>
<td>-0.128</td>
<td>-0.164</td>
</tr>
<tr>
<td>M27</td>
<td>1169197</td>
<td>12362830</td>
<td>11</td>
<td>4.602</td>
<td>0.220</td>
<td>144.5</td>
<td>112.5</td>
<td>124.3</td>
<td>0.015</td>
<td>0.209</td>
<td>0.078</td>
</tr>
<tr>
<td>M28</td>
<td>1222471</td>
<td>12478785</td>
<td>19</td>
<td>3.401</td>
<td>0.297</td>
<td>41.2</td>
<td>62.4</td>
<td>84.2</td>
<td>0.189</td>
<td>0.165</td>
<td>0.112</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M29</td>
<td>1436604</td>
<td>12125411</td>
<td>23</td>
<td>5.276</td>
<td>0.191</td>
<td>112.9</td>
<td>168.8</td>
<td>170.6</td>
<td>0.373</td>
<td>0.441</td>
<td>0.207</td>
</tr>
<tr>
<td>S1</td>
<td>1428556</td>
<td>12124870</td>
<td>22</td>
<td>4.976</td>
<td>0.208</td>
<td>312.9</td>
<td>211.6</td>
<td>173.3</td>
<td>-0.023</td>
<td>0.235</td>
<td>0.194</td>
</tr>
<tr>
<td>S2</td>
<td>1406621</td>
<td>12173163</td>
<td>6</td>
<td>6.037</td>
<td>0.169</td>
<td>257.9</td>
<td>170.9</td>
<td>146.8</td>
<td>-0.194</td>
<td>0.182</td>
<td>0.329</td>
</tr>
<tr>
<td>S3</td>
<td>1413325</td>
<td>12081272</td>
<td>33</td>
<td>5.242</td>
<td>0.204</td>
<td>274.8</td>
<td>229.9</td>
<td>184.8</td>
<td>0.528</td>
<td>0.210</td>
<td>0.075</td>
</tr>
<tr>
<td>S4</td>
<td>1458022</td>
<td>12030443</td>
<td>60</td>
<td>5.458</td>
<td>0.192</td>
<td>246.8</td>
<td>173.5</td>
<td>181.9</td>
<td>0.180</td>
<td>0.121</td>
<td>-0.047</td>
</tr>
<tr>
<td>S5</td>
<td>1396129</td>
<td>12216839</td>
<td>11</td>
<td>5.252</td>
<td>0.200</td>
<td>81.4</td>
<td>102.1</td>
<td>162.0</td>
<td>0.836</td>
<td>0.713</td>
<td>0.326</td>
</tr>
<tr>
<td>S6</td>
<td>1446435</td>
<td>12017165</td>
<td>120</td>
<td>4.140</td>
<td>0.246</td>
<td>525.4</td>
<td>243.7</td>
<td>188.5</td>
<td>-0.818</td>
<td>-0.193</td>
<td>-0.034</td>
</tr>
<tr>
<td>S7</td>
<td>1208537</td>
<td>11773102</td>
<td>11</td>
<td>7.320</td>
<td>0.137</td>
<td>146.3</td>
<td>134.3</td>
<td>163.7</td>
<td>0.849</td>
<td>0.701</td>
<td>0.327</td>
</tr>
<tr>
<td>S8</td>
<td>1413325</td>
<td>12081272</td>
<td>15</td>
<td>4.914</td>
<td>0.215</td>
<td>274.8</td>
<td>229.9</td>
<td>184.8</td>
<td>0.528</td>
<td>0.210</td>
<td>0.075</td>
</tr>
</tbody>
</table>

Flying Squirrel