Supplemental Material for Ren et al. “VirFinder: a novel k-mer based tool for identifying viral sequences from assembled metagenomic data”

Table S1. VirFinder and VirSorter prediction results for \(n=45\) RefSeq prokaryotic virus genomes sequenced after 1/1/2014 that have no significant blastn similarity (E-value > 1e\(^{-5}\)) to RefSeq prokaryotic virus genomes sequenced before 1/1/2014.

<table>
<thead>
<tr>
<th>Virus genome</th>
<th>NCBI accession</th>
<th>Length (bp)</th>
<th>VirFinder score</th>
<th>VirFinder p-value</th>
<th>VirSorter result (^a)</th>
<th>Evaluate VirFinder (VF) and VirSorter (VS) results (^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oenococcus phage phi9805</td>
<td>NC_023559_1</td>
<td>46145</td>
<td>0.060</td>
<td>0.422</td>
<td>II</td>
<td>VS but not VF</td>
</tr>
<tr>
<td>Oenococcus phage phiS11</td>
<td>NC_023571_1</td>
<td>42643</td>
<td>0.065</td>
<td>0.407</td>
<td>II</td>
<td>VS but not VF</td>
</tr>
<tr>
<td>Oenococcus phage phiS13</td>
<td>NC_023560_1</td>
<td>43454</td>
<td>0.094</td>
<td>0.345</td>
<td>II</td>
<td>VS but not VF</td>
</tr>
<tr>
<td>Eel River basin pequenovirus isolate c22476</td>
<td>NC_026665_1</td>
<td>6083</td>
<td>0.255</td>
<td>0.187</td>
<td>II</td>
<td>VS but not VF</td>
</tr>
<tr>
<td>Mycobacterium phage Adler</td>
<td>NC_023591_1</td>
<td>95705</td>
<td>0.401</td>
<td>0.120</td>
<td>Cat. VI provirus</td>
<td>Neither</td>
</tr>
<tr>
<td>Vibrio phage X29</td>
<td>NC_024369_2</td>
<td>41569</td>
<td>0.565</td>
<td>0.073</td>
<td>II</td>
<td>VS but not VF</td>
</tr>
<tr>
<td>Uncultured phage WW-nAnB strain 3</td>
<td>NC_023566_1</td>
<td>40524</td>
<td>0.608</td>
<td>0.049</td>
<td>II</td>
<td>VS but not VF</td>
</tr>
<tr>
<td>Shewanella sp. phage 1/41</td>
<td>NC_023566_1</td>
<td>40524</td>
<td>0.608</td>
<td>0.049</td>
<td>II</td>
<td>VS but not VF</td>
</tr>
<tr>
<td>Rhizobium phage vB_RglS_P106B</td>
<td>NC_023591_1</td>
<td>95705</td>
<td>0.401</td>
<td>0.120</td>
<td>Cat. VI provirus</td>
<td>Neither</td>
</tr>
<tr>
<td>Psychrobacter phage Psymv2</td>
<td>NC_023734_1</td>
<td>35725</td>
<td>0.704</td>
<td>0.045</td>
<td>II</td>
<td>VS but not VF</td>
</tr>
<tr>
<td>Erwinia phage Ea35-70</td>
<td>NC_023557_1</td>
<td>271084</td>
<td>0.765</td>
<td>0.034</td>
<td>II</td>
<td>VS but not VF</td>
</tr>
<tr>
<td>Arthrobacter phage vB_ArtM-ArV1</td>
<td>NC_026606_1</td>
<td>71200</td>
<td>0.803</td>
<td>0.028</td>
<td>II</td>
<td>VS but not VF</td>
</tr>
<tr>
<td>Vibrio phage VpKK5</td>
<td>NC_026610_2</td>
<td>56637</td>
<td>0.894</td>
<td>0.014</td>
<td>II</td>
<td>VS but not VF</td>
</tr>
<tr>
<td>Microviridae IME-16</td>
<td>NC_026013_1</td>
<td>5755</td>
<td>0.917</td>
<td>0.012</td>
<td>III</td>
<td>Neither</td>
</tr>
<tr>
<td>Croceibacter phage P2559Y</td>
<td>NC_023614_1</td>
<td>43153</td>
<td>0.924</td>
<td>0.010</td>
<td>II</td>
<td>VS but not VF</td>
</tr>
<tr>
<td>Lactococcus phage WP-2</td>
<td>NC_024149_1</td>
<td>18899</td>
<td>0.934</td>
<td>0.009</td>
<td>II</td>
<td>Both</td>
</tr>
<tr>
<td>Aeromonas phage pAh6-C</td>
<td>NC_025459_1</td>
<td>53744</td>
<td>0.944</td>
<td>0.008</td>
<td>II</td>
<td>Both</td>
</tr>
<tr>
<td>Rhizobium phage vB_RleS_L338C</td>
<td>NC_023502_1</td>
<td>109558</td>
<td>0.946</td>
<td>0.008</td>
<td>II</td>
<td>Both</td>
</tr>
<tr>
<td>Rhodococcus phage ReqIPoco6</td>
<td>NC_023694_1</td>
<td>78064</td>
<td>0.948</td>
<td>0.007</td>
<td>II</td>
<td>Both</td>
</tr>
<tr>
<td>Erwinia phage PhiEaH1</td>
<td>NC_023610_1</td>
<td>218339</td>
<td>0.951</td>
<td>0.007</td>
<td>II</td>
<td>Both</td>
</tr>
<tr>
<td>Uncultured phage WW-nAnB strain 2</td>
<td>NC_026612_1</td>
<td>5077</td>
<td>0.954</td>
<td>0.007</td>
<td>N</td>
<td>VF but not VS</td>
</tr>
<tr>
<td>Rhodococcus phage ReqIPepy6</td>
<td>NC_023735_1</td>
<td>76797</td>
<td>0.957</td>
<td>0.007</td>
<td>II</td>
<td>Both</td>
</tr>
<tr>
<td>Idiomarinaceae phage PhilM2-2</td>
<td>NC_025471_1</td>
<td>36844</td>
<td>0.957</td>
<td>0.007</td>
<td>II</td>
<td>Both</td>
</tr>
<tr>
<td>Shewanella sp. phage 3/49</td>
<td>NC_025466_1</td>
<td>40161</td>
<td>0.963</td>
<td>0.006</td>
<td>II</td>
<td>Both</td>
</tr>
<tr>
<td>Idiomarinaceae phage 1N2-2</td>
<td>NC_025439_1</td>
<td>34773</td>
<td>0.966</td>
<td>0.005</td>
<td>II</td>
<td>Both</td>
</tr>
</tbody>
</table>
Clavibacter phage CN1A NC_023549_1 56789 0.969 0.005 II Both
Uncultured phage WW-nAnB NC_026582_1 4817 0.972 0.005 N VF but not VS
Ruegeria phage DSS3-P1 NC_025428_1 59601 0.976 0.004 II Both
Vibrio phage CHOE D NC_023594_1 54789 0.979 0.004 II Both
Shewanella sp. phage 1/44 NC_025462_1 49640 0.975 0.004 II Both
Mesorhizobium phage vB_MloP_Lo5R7ANS NC_025431_1 45718 0.976 0.004 II Both
Shewanella sp. phage 1/40 NC_025436_1 133824 0.993 0.002 II Both
Acinetobacter phage vB_AbaM_Acibel004 NC_025462_1 99730 0.996 0.001 Cat. V provirus Both
Vibrio phage phi-A318 NC_025822_1 42544 0.999 0.000 II Both
Anabaena phage Λ-4L NC_024358_1 41750 1.000 0.000 II Both

a – VirSorter prediction result (category I, II, or III, for viruses and IV, V, and VI for category 1, 2, 3 results for detected proviruses). N = no prediction made by VirSorter.
b – Summary of the results comparing the VirFinder (VF, p-value < 0.01) and VirSorter (VS, only cat. I & II predictions) results. “Neither” = neither method predicted the genome as viral, “Both” = both VF and VS predicted it as viral, “VF but not VS” = VF predicted it as viral but VS did not, and “VS but not VF” = VS predicted it as viral but VF did not.

Table S2. NCBI accession numbers for prokaryotic host and viral genomes used in the training and evaluation of VirFinder. This table is available as supplemental online material.

Table S3. Table of abundances of 1,562 possible virus and 2,698 complete prokaryotic genomes as determined by read mapping of human gut microbiome metagenome sample SRR061166 from Vázquez-Castellanos et al. 2014. These abundances were used to generate simulated metagenomes. This table is available as supplemental online material.

Table S4. Information about the 2,657 top-scoring predicted viral contigs assembled from 78 human gut microbiome samples from the liver cirrhosis study of Qin et al. 2014.
The table includes general information about the size of contigs and to which bin they belong, VirFinder and VirSorter prediction results, and whether or not those contigs have significantly similarity to other sequences in NCBI’s nucleotide nt and protein nr databases. This table is available as supplemental online material.

Supplemental Figure Legends

Figure S1. Area under the receiver operator curve (AUROC) (A) and Area under precision-recall curves (AUPRC) (B) for predictions results made with VirFinder on varying mixtures of viral and host contigs subsampled from viral and host genomes sequenced after 1/1/2014. VirFinder was trained using contigs equal numbers of viral and host contigs subsampled from genomes sequenced before 1/1/2014 as in the results for Fig. 1. Bars depict mean values for 30 replicate bootstrap samples and error bars depict the standard error.

Figure S2. Performance of VirSorter and VirFinder virus prediction for contigs subsampled from virus and prokaryotic genomes as in Fig. 2A, except that evaluation datasets contained 10% (A) or 90% (B) viral contigs. Results are shown for the fraction of true viral contigs (true positive rate, TPR) when using VirSorter category I and II predictions and VirFinder at the same false positive rate (FPR) as VirSorter (listed in or above the VirSorter bars) and at FPRs of 0.001, 0.005, and 0.01. Bars depict mean values for 30 replicate bootstrap samples and error bars depict the standard error. TPRs of VirFinder were all significantly higher than that of VirSorter at the same false positive rate (Wilcoxon signed-rank one sided test, p < 0.001).

Figure S3. Sensitivity of VirFinder to random mutations applied to evaluation contigs. VirFinder prediction results as evaluated by AUROCs were determined on contigs subsampled from viral and host genomes with no mutations applied vs. when random mutations were applied to the contigs at three different rates (0.0001, 0.001, and 0.01 substitutions per position). Bars represent averages of 30 replicate datasets tested, and error bars indicate standard deviations. Within each contig length group, there was only a significant difference in values between the 0.01 rate and the case of no mutation (p < 0.01, t-test).

Figure S4. Precision-recall curves and AUPRC for VirFinder results when analyzing contigs assembled from simulated metagenomes. (A) Precision-recall curves for the analysis of equal proportions of viral and host contigs representing genomes sequenced after 1/1/2014. Results are shown for when chimeras were included or excluded from the analysis. (B) AUPRC scores for various VirFinder results when varying the total sequencing depth for the simulated metagenomes (10 M or 20 M reads) and varying the relative abundance of viral and host contigs analyzed. Bars represent averages of 30 replicate datasets tested, and error bars indicate standard deviations.
Figure S5. Evaluation of VirFinder (VF) and VirSorter (VS) predictions on contigs for three length ranges assembled from simulated human gut metagenomes when viral contigs were combined with host contigs at 10% (A) and 90% (B) viral levels. Bars depict true positive rates (TPRs) for VirSorter category I; I and II; and I, II, and III predictions. As in Fig. 5, VirFinder predictions were evaluated at the same false positive rates (FPRs) as corresponding VirSorter results. Thirty replicate bootstrap samples of contigs assembled from simulated metagenomes were tested for each condition. Metagenomes were simulated based on the relative abundance of complete virus and host genomes found in a real human gut metagenome. The horizontal bar displays the median, boxes display the first and third quartiles, and whiskers depict minimum and maximum values. "*" indicates VirFinder’s TPRs are significantly larger than VirSorter’s (Wilcoxon signed-rank one sided test, $p < 10^{-5}$).

Figure S6. Evaluation of VirFinder (VF) and VirSorter (VS) predictions on contigs assembled from simulated human gut metagenomes when viral contigs were combined with host contigs at 10%, 50% and 90% viral levels. Results are shown for predictions made on all contigs > 500 bp (left column) or all contigs > 1000 bp (right column). Bars depict true positive rates (TPRs) for VirSorter category I (“I”); I and II (“I&II”); and I, II, and III (“I-III”) predictions. As in Fig. 5, VirFinder predictions were evaluated at the same false positive rates (FPR) as corresponding VirSorter results. Thirty replicate bootstrap samples of contigs assembled from simulated metagenomes were tested for each condition. Metagenomes were simulated based on the relative abundance of complete virus and host genomes found in a real human gut metagenome. The horizontal bar displays the median, boxes display the first and third quartiles, and whiskers depict minimum and maximum values. "***" indicates VirFinder’s TPRs are significantly larger than VirSorter’s (Wilcoxon signed-rank one sided test, $p < 0.05$).

Figure S7. Histogram of the lengths of 352,020 contigs that are >1,000 bp generated by cross-assembly of 78 human gut metagenomic samples from 40 healthy and 38 liver cirrhosis patients (Qin et al. 2014).

Figure S8. Histograms depicting the cumulative frequencies for different groups of k-mers (length 8) as they occur in viral and host contigs. Panels depict the top 100, 500, 1000 most highly scored k-mers or all k-mers used by VirFinder (trained with 1,000 bp contigs) to generate prediction scores ($n=6269$ and 6082 for k-mers with positive and negative coefficients respectively). The left column of graphs depicts k-mers with positive coefficients in VirFinder’s model (i.e. those that are found more frequently among viral sequences) and the right column shows k-mers that are negatively scored (those that are found more frequently among host sequences). In each panel, host and viral k-mer distributions were significantly different ($p < 10^{-16}$, t-test).

Figure S9. Similarity between the prediction proteins on the crAssphage genome (below) and on two contigs belonging to viral bin 64 (above). Grey arrows depict predicted proteins and trapezoids depict the percent amino acid identity between two connected
genes as determined by blastp searches. Numbers in crAssphage genes indicate the annotated locus tag of those genes (UGP_xxx).

Figure S10. VirFinder predictions were made when it was trained on the set of 14,722 prokaryotic host genomes from Roux et al. 2015 and the 1,225 viral genomes sequenced before 1/1/2014 that were used in the rest of our study. The Roux et al. host genomes were used as is or with proviruses identified by VirSorter removed (‘proviruses removed’). VirFinder predictions were made on contigs with various lengths of virus genomes sequenced after 1/1/2014 and host genomes subsampled from host genomes after 1/1/2014 at equal proportions, and the resulting AUROC values are shown. The difference in AUROC values among the three datasets are less than 3%. Bars depict the mean of results on 30 replicate evaluation datasets and error bars depict standard deviations.

Figure S11. VirFinder predictions were made when VirFinder was trained with viral and prokaryotic sequences as before or with viral contigs ‘spiked’ into the host training set to assess the impact of an overabundance of proviruses in host training dataset. VirFinder was trained on host and viral contigs that were subsampled at equal numbers from prokaryotic and viral genomes sequenced before 1/1/2014 (“Control”) and when 5% of the host contigs in the training set were replaced with contigs subsampled from viral genomes (“5% viral contigs added to host training database”). Predictions were made on equal numbers of viral and host contigs subsampled from genomes sequenced after 1/1/2014. Bar depict mean AUROC values for 30 replicate sets of subsampled contigs and error bars depict standard deviations.
Figure S1

A

AUROC

Fraction of viral contigs

500 bp | 1,000 bp | 3,000 bp | 5,000 bp | 10,000 bp

10% virus | 50% virus | 90% virus

B

AUPRC

Fraction of viral contigs

10% virus | 50% virus | 90% virus
Figure S2

A

10% viral contigs

True positive rate (recall)

VirSorter (cat. I & II)
VirFinder at VirSorter FPR
VirFinder at 0.001 FPR
VirFinder at 0.005 FPR
VirFinder at 0.01 FPR

Contig size (bp)

B

90% viral contigs

True positive rate (recall)

VirSorter (cat. I & II)
VirFinder at VirSorter FPR
VirFinder at 0.001 FPR
VirFinder at 0.005 FPR
VirFinder at 0.01 FPR
Figure S3

- 0 (no mutation)
- 0.0001
- 0.001
- 0.01

![Graph showing AUROC with contig length (bp) on the x-axis and AUROC on the y-axis. Different mutation rates are indicated by different shades of gray and black.](image-url)
Figure S4

A

- **500−1,000 bp**
 - AUROC include chimeras: 0.91
 - AUROC exclude chimeras: 0.90
- **1,000−3,000 bp**
 - AUROC include chimeras: 0.94
 - AUROC exclude chimeras: 0.94
- **>3,000 bp**
 - AUROC include chimeras: 0.98
 - AUROC exclude chimeras: 0.96

B

- **500-1,000 bp**
- **1,000-3,000 bp**
- **>3,000 bp**
- **all sequences > 500 bp**
- **all sequences >1,000 bp**

Number of reads and viral fraction

- **10% virus**
- **50% virus**
- **90% virus**

- **10M reads**
- **20M reads**

AUPRC

- **10% virus**
- **50% virus**
- **90% virus**
Figure S5

A 10% viral contigs

Virus prediction method used

B 90% viral contigs

Virus prediction method used
Figure S6

Quantitative analysis of the true positive rate (recall) for different virus concentrations.

- **10% Virus**:
 - All sequences > 500 bp
 - All sequences > 1,000 bp

- **50% Virus**:
 - All sequences > 500 bp
 - All sequences > 1,000 bp

- **90% Virus**:
 - All sequences > 500 bp
 - All sequences > 1,000 bp

Each chart compares the true positive rate for different categories (Cat. I, Cat. I&II, Cat. I-III) and virus concentrations (VS, VF). The significance of differences is indicated with asterisks (*) for each category.
Figure S7
Figure S8

Top 100 most highly scored words

Top 500 most highly scored words

Top 1000 most highly scored words

All words

Cumulative frequencies for all the included k-mers

Frequency

Words with positive coefficients

Words with negative coefficients

- Virus
- Host

n=6269

n=6082
Figure S9

Contig | k99_1820233_flag_0_multi_1_0066_len_10533

Contig | k99_1695388_flag_0_multi_1_0095_len_12742

Position along contig (kb)

Position along genome (kb)

crAssphage
Figure S10

14,772 prokaryotic genomes from Roux et al. 2015

31,986 prokaryotic genomes used in this study

14,772 prokaryotic genomes from Roux et al. 2015 with proviruses removed

AUROC

Contig size (bp)

500 1,000 3,000 5,000 10,000
Figure S11

- Control (no viral contigs added into host training database)
- 5% viral contigs added to host training database

AUROC

Contig size (bp)