Systematic Review Protocol for Animal Intervention Studies

Format by SYRCLE (www.syrcle.nl)
Version 2.0 (December 2014)

<table>
<thead>
<tr>
<th>Item #</th>
<th>Section/Subsection/Item</th>
<th>Description</th>
<th>Check for approval</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. General</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Title of the review</td>
<td>Mesenchymal stem cells for sensorineural hearing loss: a systematic review of pre-clinical studies</td>
<td></td>
</tr>
</tbody>
</table>
| 2. | Authors (names, affiliations, contributions) | Kevin Chorath: study design, data collection and analysis, manuscript writing
Nicolas Morton-Gonzaba: data collection and analysis, manuscript writing
Walter John Humann: study design
Matthew Willis: study design, data collection and analysis, manuscript writing
Alvaro Moreira: study design, statistical analysis, manuscript revising, supervision | |
| | | University of Texas Health San Antonio
7703 Floyd Curl Dr., MC 7812
San Antonio, Texas, 78229 USA | |
| 3. | Other contributors (names, affiliations, contributions) | | |
| 4. | Contact person + e-mail address | Alvaro Moreira: moreiraa@uthscsa.edu | |
| 5. | Funding sources/sponsors | National Center for Advancing Translational Sciences, National Institutes of Health, through Grant KL2 TR001118. | |
| 6. | Conflicts of interest | None | |
| 7. | Date and location of protocol registration | | |
| 8. | Registration number (if applicable) | | |
| 9. | Stage of review at time of registration | Preliminary searches
Piloting study selection
Formal screening with final search criteria | |
| **B. Objectives** | | | |
| **Background** | | | |
| 10. | What is already known about this disease/model/intervention? Why is it important to do this review? | Sensorineural hearing loss (SNHL) is the most common form of permanent hearing loss. Unfortunately, there is no proven therapy to cure SNHL. However, advances in regenerative medicine have shown mesenchymal stem cells are a novel therapy in improving hearing in animal models of SNHL. Despite promising findings, a methodical evaluation of preclinical studies has not been performed. | |
The purpose of this systematic review is to examine the potential use mesenchymal stem cells (MSC) as a therapy in animal models of SNHL.

Research question

11. Specify the disease/health problem of interest
 - Sensorineural hearing loss: congenital, age related, or induced

12. Specify the population/species studied
 - All animal species, all ages

13. Specify the intervention/exposure
 - Mesenchymal stem/stromal cells

14. Specify the control population
 - Sensorineural hearing loss with severity equivalent to experimental group, not receiving stem cell therapy

15. Specify the outcome measures
 - **Primary outcome:** Functional hearing assessment
 - Otoacoustic emissions (OAE)
 - Cochlear microphonic
 - Auditory brainstem response (ABR)
 - Electrocochleography
 - Summating potential
 - Tympanometry
 - Compound action potential
 - Brainstem auditory evoked potentials (BAEP)
 - **Secondary outcome:**
 - Imaging
 - Histology
 - Microscopy
 - Gene protein expression
 - Behavioral

16. State your research question (based on items 11-15)
 - Can MSCs improve sensorineural hearing loss in animals?

C. Methods

Search and study identification

17. Identify literature databases to search (e.g. Pubmed, Embase, Web of science)
 - MEDLINE via PubMed
 - SCOPUS
 - Other, namely: Science Direct, CINAHL, Google Scholar
 - Specific journal(s), namely:

18. Define electronic search strategies (e.g. use the [step by step search guide](#) and animal search filters)
 - When available, please add a supplementary file containing your search strategy: [insert file name]

19. Identify other sources for study identification
 - Reference lists of included studies
 - Reference lists of relevant reviews
 - Conference proceedings, namely:
 - Contacting authors/organisations, namely:
 - Other, namely:

20. Define search strategy for these other sources
 - Screening the reference lists for relevant titles and screening the abstracts of these relevant titles
21. Define screening phases (e.g. pre-screening based on title/abstract, full text screening, both)
 First phase screening based on title and abstract
 Second phase full-text screening of the eligible articles

22. Specify (a) the number of reviewers per screening phase and (b) how discrepancies will be resolved
 Two investigators (K. Chorath and M. Willis) will independently screen all the abstracts/full texts for the inclusion criteria. Differences of opinion in either phase that cannot be resolved by discussion will be resolved by consulting a third investigator (A. Moreira).

Define all inclusion and exclusion criteria based on:

23. Type of study (design)
 Inclusion criteria:
 Animal intervention studies, regardless of the methodological quality
 Exclusion criteria:
 Non-intervention studies
 No control group

24. Type of animals/population (e.g. age, gender, disease model)
 Inclusion criteria:
 All genders
 All ages
 Exclusion criteria:
 Humans
 In vitro

25. Type of intervention (e.g. dosage, timing, frequency)

26. Outcome measures
 Primary outcome: Functional hearing assessment
 Secondary outcome: Refer to objective 15

27. Language restrictions
 Only English articles will be included

28. Publication date restrictions
 None

29. Other

30. Sort and prioritize your exclusion criteria per selection phase
 Selection phase I:
 1. Not a primary study
 2. Not an *in vivo* animal study
 3. Not SNHL
 4. No MSC treatment
 Selection phase II:
 1. Not a primary study
 2. Not an *in vivo* animal study
 3. No SNHL
 4. No MSC treatment
 5. No control group

31. Study ID (e.g. authors, year)
 Authors, journal, title, year, language, contact author e-
| 32. | Study design characteristics (e.g. experimental groups, number of animals) | Number of animals in experimental and control groups Etiology for SNHL |
| 33. | Animal model characteristics (e.g. species, gender, disease induction) | Animal species, strain, age, gender, congenital, disease induction, immune status |
| 34. | Intervention characteristics (e.g. intervention, timing, duration) | Source, dose, route of delivery, timing, and frequency of MSCs |
| 35. | Outcome measures | Type and timing of outcome measures in paper |
| 36. | Other (e.g. drop-outs) | Reason of exclusion |

Assessment risk of bias (internal validity) or study quality

| 37. | Specify (a) the number of reviewers assessing the risk of bias/study quality in each study and (b) how discrepancies will be resolved | Two investigators (K. Chorath and M. Willis) will independently screen all the abstracts/full texts for the inclusion criteria. Differences of opinion in either phase that cannot be resolved by discussion will be resolved by consulting a third investigator (A. Moreira). |
| 38. | Define criteria to assess (a) the internal validity of included studies (e.g. selection, performance, detection and attrition bias) and/or (b) other study quality measures (e.g. reporting quality, power) | X By use of SYRCLE’s Risk of Bias tool[^4] □ By use of SYRCLE’s Risk of Bias tool, adapted as follows: □ By use of CAMARADES’ study quality checklist, e.g. [22] □ By use of CAMARADES’ study quality checklist, adapted as follows: □ Other criteria, namely: |

Collection of outcome data

39.	For each outcome measure, define the type of data to be extracted (e.g. continuous/dichotomous, unit of measurement)	Primary/Secondary outcome: continuous data
40.	Methods for data extraction/retrieval (e.g. first extraction from graphs using a digital screen ruler, then contacting authors)	Extraction from text, tables, and figures (GetData Graph Digitizer)
41.	Specify (a) the number of reviewers extracting data and (b) how discrepancies will be resolved	Two investigators (K. Chorath and M. Willis) will independently screen all the abstracts/full texts for the inclusion criteria. Differences of opinion in either phase that cannot be resolved by discussion will be resolved by consulting a third investigator (A. Moreira).

Data analysis/synthesis

| 42. | Specify (per outcome measure) how you are planning to combine/compare the data (e.g. descriptive summary, meta-analysis) |
| 43. | Specify (per outcome measure) how it will be decided whether a meta-analysis will be performed |

If a meta-analysis seems feasible/sensible, specify for each outcome measure:

<p>| 44. | The effect measure to be used (e.g. mean difference, standardized mean difference, risk ratio, odds ratio) | Continuous outcomes will be analysed using standardized mean differences (95% CI) |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>45.</td>
<td>The statistical model of analysis (e.g. random or fixed effects model)</td>
<td>Random-effects model</td>
</tr>
<tr>
<td>46.</td>
<td>The statistical methods to assess heterogeneity (e.g. I^2, Q)</td>
<td>I^2</td>
</tr>
<tr>
<td>47.</td>
<td>Which study characteristics will be examined as potential source of heterogeneity (subgroup analysis)</td>
<td>Meta-regression analyses will be performed to examine heterogeneity on outcomes including: animal type, animal age, sex, species and strain, type of SNHL induction, type and tissue source of MSCs, timing, frequency, dosing of administration, route of cell administration, use of co-interventions</td>
</tr>
<tr>
<td>48.</td>
<td>Any sensitivity analyses you propose to perform</td>
<td></td>
</tr>
<tr>
<td>49.</td>
<td>Other details meta-analysis (e.g. correction for multiple testing, correction for multiple use of control group)</td>
<td></td>
</tr>
<tr>
<td>50.</td>
<td>The method for assessment of publication bias</td>
<td>Funnel plots and Egger’s test</td>
</tr>
</tbody>
</table>

Final approval by (names, affiliations):
Kevin Chorath, Nicolas Morton-Gonzaba, Matthew Willis, Alvaro Moreira

Date: June 13, 2018