Generating the Pubchem background hierarchy with Scaffviz Generator

Jakub Velkborsky, David Hoksza

The generator operates with so called tasks. The background hierarchy can be obtained by a sequence of three such tasks.

ImportPubChem The first task converts the PubChem Compound database from the form of compressed SDF files, tens of gigabytes large (down-loadable at [ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/]), to a simplified custom database. In this database, each compound is stored as a record consisting of a unique identifier (PubChem Compound ID) and the compound’s representation in SMILES format. The database is compressed, 40× smaller than the original form and faster to access. More importantly, it serves as a standardized input format for the following task. This implies that any other database can be used as a source for the background data just by implementing a custom task akin to ImportPubChem - i.e. such that it provides a unique identifier and a SMILES string for each molecule in the source database - which should be easy enough.

GenerateScaffolds The second task simply processes the input molecules one by one and calculates their scaffolds. The scaffolds are calculated by level, bottom up. This way, for each unique scaffold the appropriate transformation is performed only once - i.e. if two input compounds share a scaffold on some level, this shared scaffold’s parent is computed only once and not once for each of the molecules. The task creates a raw processing hierarchy. In this hierarchy, for each scaffold its parent scaffold is stored. As additional information, the number of compounds that corresponds to each scaffold is calculated. All the scaffolds are represented by SMILES strings, unique per level.
GenerateHierarchy The final task converts the processing hierarchy into its final form, which is more compact and suitable to be used by the visualizer. The task consists of two steps. In the first step, each scaffold is assigned a unique numerical id (a primary key) and is stored under this id. In the second step, two maps are created over the ids - a children map a parent map. The children map contains for each scaffold a list of ids of its children, the parent map contains for each scaffold the unique id of its parent scaffold.

The three tasks can be executed one by one or all at once, as described in the installation guide.

The calculations are performed in parallel, using all available CPU cores. As a result, on a common 4-core 4 GHz processor, using PubChem Compound as the source, the ImportPubChem task takes approximately 4 hours and 15 minutes to complete, the GenerateScaffolds task takes about 5 hours 35 minutes and the GenerateHierarchy task can be completed in about under 25 minutes.