Figure 1: Analysis of the number of iterations of the optimization procedure required for reaching the highest accuracy for 5-HT2A receptor.
Figure 2: Analysis of the number of iterations of the optimization procedure required for reaching the highest accuracy for 5-HT2C receptor.
Figure 3: Analysis of the number of iterations of the optimization procedure required for reaching the highest accuracy for 5-HT6 receptor.
Figure 4: Analysis of the number of iterations of the optimization procedure required for reaching the highest accuracy for 5-HT7 receptor.
Figure 5: Analysis of the number of iterations of the optimization procedure required for reaching the highest accuracy for acetylcholinesterase.
Figure 6: Analysis of the number of iterations of the optimization procedure required for reaching the highest accuracy for adenosine 1a receptor.
Figure 7: Analysis of the number of iterations of the optimization procedure required for reaching the highest accuracy for alpha 2a AR.
Figure 8: Analysis of the number of iterations of the optimization procedure required for reaching the highest accuracy for beta1AR.
Figure 9: Analysis of the number of iterations of the optimization procedure required for reaching the highest accuracy for beta3AR.
Figure 10: Analysis of the number of iterations of the optimization procedure required for reaching the highest accuracy for cannabinoid CB1 receptor.
Figure 11: Analysis of the number of iterations of the optimization procedure required for reaching the highest accuracy for CDK2.
Figure 12: Analysis of the number of iterations of the optimization procedure required for reaching the highest accuracy for delta opioid receptor.
Figure 13: Analysis of the number of iterations of the optimization procedure required for reaching the highest accuracy for dopamine D4 receptor.
Figure 14: Analysis of the number of iterations of the optimization procedure required for reaching the highest accuracy for histamine H1 receptor.
Figure 15: Analysis of the number of iterations of the optimization procedure required for reaching the highest accuracy for histamine H3 receptor.
Figure 16: Analysis of the number of iterations of the optimization procedure required for reaching the highest accuracy for HIV integrase.
Figure 17: Analysis of the number of iterations of the optimization procedure required for reaching the highest accuracy for insulin receptor.
Figure 18: Analysis of the number of iterations of the optimization procedure required for reaching the highest accuracy for kinase ABL.
Figure 19: Analysis of the number of iterations of the optimization procedure required for reaching the highest accuracy for leukocyte elastase.
Figure 20: Analysis of the number of iterations of the optimization procedure required for reaching the highest accuracy for muscarinic M1 receptor.
Figure 21: Analysis of the number of iterations of the optimization procedure required for reaching the highest accuracy for MAP kinases ERK2.