Additional file 1. Phylogenetic analyses (Figures S1a-h), additional gene expression patterns (Figures S2-9), Table S1, primer and Go-opsin sequences.
Figure S1a. Phylogenetic analyses on metazoan opsins.

Maximum likelihood phylogenetic analysis of the *Antalis entalis* opsin proteins (red). NCBI accession numbers are provided for each sequence (accession number for *aen-xenopsin*: MK934770). Tree is based upon that presented in Ramirez et al. 2016. Percent bootstrap values over 70 are displayed, and the scale bar indicates the branch length for 0.4 amino acid substitutions. *Trichoplax* opsin proteins (placopsins) are included as an outgroup.

Figure S1b. Maximum likelihood phylogenetic analysis of the *Antalis entalis* Dachshund protein (red). NCBI accession numbers are provided for each sequence. Percent bootstrap values over 70 are displayed, and the scale bar indicates the branch length for 0.4 amino acid substitutions. Related ski proteins are included as an outgroup.
Figure S1c. Maximum likelihood phylogenetic analysis of the *Antalis entalis* Eya protein (red). NCBI accession numbers are provided for each sequence. Percent bootstrap values over 70 are displayed, and the scale bar indicates the branch length for 0.3 amino acid substitutions. Non-metazoan Eya sequences are included as an outgroup.
Figure S1d. Maximum likelihood phylogenetic analysis of the *Antalis entalis* Myosin V protein (red). NCBI accession numbers are provided for each sequence. Tree is based upon that presented in Vöcking et al. (2015). Percent bootstrap values over 70 are displayed, and the scale bar indicates the branch length for 0.4 amino acid substitutions. Myosin VII proteins are included as an outgroup.
Figure S1e. Maximum likelihood phylogenetic analysis of the *Antalis entalis* Pax6 protein (red). NCBI accession numbers are provided for each sequence (accession number for *aen-pax6*: MK934769). Tree is based upon that presented in Vöcking et al. (2015). Percent bootstrap values over 70 are displayed, and the scale bar indicates the branch length for 0.3 amino acid substitutions. Pox neuro proteins are included as an outgroup.

Figure 1f. Maximum likelihood phylogenetic analysis of the *Antalis entalis* Rpgr protein (red). NCBI accession numbers are provided for each sequence. Percent bootstrap values over 70 are displayed, and the scale bar indicates the branch length for 0.2 amino acid substitutions. Related RCC1-containing proteins are included as an outgroup.
Figure S1g. Maximum likelihood phylogenetic analysis of the Antalis entalis Six1/2 proteins (red). Three transcripts encode proteins that fall within the Six1/2 clade, the sequence with the highest similarity to L. asellus Six1/2 is bold. NCBI or UniProt accession numbers are provided for all sequences. Tree is based upon that presented in Vöcking et al. (2015). Percent bootstrap values over 70 are displayed, and the scale bar indicates the branch length for 0.2 amino acid substitutions. Midpoint rooting.
Figure S1h. Maximum likelihood phylogenetic analysis of the *Antalis entalis* TRPC protein (red). NCBI accession numbers are provided for each sequence. Tree is based upon that represented in Vöcking et al. (2015). Percent bootstrap values over 70 are displayed, and the scale care indicates the branch length for 0.6 amino acid substitutions. Midpoint rooting.
Figure S2. Go-opsin expression during the development of the scaphopod Antalis entalis.
Anterior faces up in all panels and dorsal faces to the right in lateral views. Asterisk labels the mouth. (a-c) Early trochophore larvae express go-opsin in the region around the mouth. (d-f) Early mid-stage trochophores express go-opsin in two cells adjacent to the apical organ (white-lined arrows) and two cells in the anterior inner mantle (black arrows). (g-j) Latero-distal view
(g), latero-proximal view (h), ventral view (i), and dorsal view (j) of mid-stage trochophore larvae that express *go-opsin* in cells migrating to the posterior pole of the trochophore larvae. Both other cells embedded in the antero-lateral mantle margin do still exist (black arrow).

Abbreviations: f foot; m mantle, pt prototroch. Scale bars: 50 µm.
Figure S3. *Dach* expression during the development of the scaphopod *Antalis entalis*.

Anterior faces up in all panels and dorsal faces to the right in lateral views. Asterisk labels the mouth. (a-c) Early trophophore larvae express *dach* in each two bilateral cells (white-lined arrowheads) embedded in the epidermis posterior to the mouth and in two cells close to the foregut (black arrows). (d-f) Early mid-stage trophophores express *dach* in the region of the cerebral ganglia, the pavilion, the antero-lateral and posterior foot, the posterior dorsal mantle region, and the lateral foot. (g-j) Latero-distal view (g), latero-proximal view (h), ventral view (i), and dorsal view (j) of mid-stage trophophore larvae that express *dach* in cells of the mantle, the foot, and pavilion. Abbreviations: cg cerebral ganglion, f foot, m mantle, pt prototroch, pv pavilion. Scale bars: 50 µm.
Figure S4. *Eya* expression during the development of the scaphopod *Antalis entalis*. Anterior faces up in all panels and dorsal faces to the right in lateral views. Asterisk labels the mouth. (a-c) Early trochophore larvae express *eya* globally in the interior of the larva. (d-f) Early mid-stage trochophores express *eya* in cells of the apical organ (arrowheads), in the region connecting the hyposphere with the invaginating episphere and the prototroch (white-lined arrows), and in...
individual cells of the ventral mantle (white-lined arrowheads). (g-j) Latero-distal view (g), latero-proximal view (h), ventral view (i), and dorsal view (j) of mid-stage trochophore larvae that express eya in apical organ cells (arrows), the mantle (white-lined arrowheads), the region connecting trunk with episphere and prototroch (white-lined arrows), and the pavilion.

Abbreviations: f foot, pt prototroch, pv pavilion. Scale bars: 50 µm.
Figure S5. MyoV expression during the development of the scaphopod Antalis entalis.

Anterior faces up in all panels and dorsal faces to the right in lateral views. Asterisk labels the mouth. **(a-c)** Early trochophore larvae express myoV+ in two cells that are located on the level of the prototroch inside the early trochophore larva. **(d-f)** In early mid-stage trochophores myoV+ cells line the mantle and the foot and are present in the pavilion. MyoV is strongly expressed in the dorsal and ventral anterior mantle margins (white-lined arrows). Several cells of the episphere including the apical organ express myoV. MyoV+ cells are present in the apical organ (black arrowheads). **(g-j)** Latero-distal view (g), latero-proximal view (h), ventral view (i), and dorsal view (j) of mid-stage trochophore larvae that expresses myoV+ in cells in similar location as early mid-stage trochophores, however, apical myoV+ cells migrate into the interior of the trochophore larvae (s. above). Abbreviations: f foot, m mantle, pt prototroch, pv pavilion. Scale bars: 50 μm.
Figure S6. *Pax6* expression during the development of the scaphopod *Antalis entalis*.

Anterior faces up in all panels and dorsal faces to the right in lateral views. Asterisk labels the mouth. (a-c) Early trochophore larvae exhibit *pax6*+ cells in the region of the prospective foot (white-lined arrows). Another pair of *pax6*+ cells is situated in the cerebral pits, invaginations that have been documented to give rise to the cerebral ganglia precursors (black arrows). (d-f)
Early mid-stage trochophores exhibit two *pax6*+ cells in the posterior foot (white-lined arrows) and each two *pax6*+ flask-shaped cells in the lateral apical organ (arrows). (g-j) Latero-distal view (g), latero-proximal view (h), ventral view (i), and dorsal view (j) of mid-stage trochophore larvae that expresses several *pax6*+ cells in the mantle, two *pax6*+ cells in the pavilion, two *pax6*+ cells in the anterior foot (white-lined arrowheads), and four *pax6*+ cells in the apical organ. The latter migrate in posterior direction into the trochophore larva (black arrows).

Abbreviations: f foot, m mantle, pt prototroch, pv pavilion. Scale bars: 50 µm.
Figure S7. *Rpgr* expression during the development of the scaphopod *Antalis entalis*.

Anterior faces up in all panels and dorsal faces to the right in lateral views. Asterisk labels the mouth.

(a-c) Early trochophore larvae express *rpgr* in the trochoblasts (arrows).

(d-f) Early mid-stage trochophores express *rpgr* in the trochoblasts (arrows) and in the pavilion (arrowhead).

(g-j) Latero-distal view (g), latero-proximal view (h), ventral view (i), and dorsal view (j) of mid-stage
trochophore larvae that possess no rpgr+ cells. Abbreviations: f foot, m mantle, pt prototroch, pv pavilion. Scale bars: 50 µm.

Figure S8. Six1/2 expression during the development of the scaphopod Antalis entalis.

Anterior faces up in all panels and dorsal faces to the right in lateral views. Asterisk labels the
mouth. (a-c) Early trochophore larvae express $\textit{six1/2}$ in two domains (black arrows) located in the region of the prospective foot. Additional expression is found in the tissue around the foregut in a region that could correspond to the anlagen of the cerebral ganglia and in two other cells that are located more posterior to the latter ones (white-lined arrow). (d-f) Early mid-stage trochophores express $\textit{six1/2}$ in the cerebral ganglia, on a low level in two cells in the apical organ (white-lined arrows), in cells in the mantle (black arrowheads), and in the region that connects the hyposphere with the episphere (white-lined arrowheads). (g-j) Latero-distal view (g), latero-proximal view (h), ventral view (i), and dorsal view (j) of mid-stage trochophore larvae that expresses $\textit{six1/2}$ in two cells of the apical organ (white-lined arrows), in epidermal cells that are located dorso-laterally to the midgut gland (double arrowheads), in individual cells of the ventral mantle (m), and in cells of the prospective central nervous system, i.e. the cerebral ganglia (cg) and the pedal ganglia (pg). Abbreviations: cg cerebral ganglion, m mantle, pg pedal ganglion, pt prototroch, pv pavilion. Scale bars: 50 µm.
Table S1: Ancestral state reconstruction of larval apical and post-trochal photoreceptors suggesting that apical and post-trochal photoreceptors are molluscan synapomorphies.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Apical photoreceptors</th>
<th>Go-opsin/ Xenopsin</th>
<th>Post-trochal photoreceptors</th>
<th>Go-opsin/ Xenopsin</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caudofoveata</td>
<td>no evidence</td>
<td>Data missing</td>
<td>Data missing</td>
<td>Data missing</td>
<td>Sigwart and Sumner-Rooney 2015</td>
</tr>
<tr>
<td>Solenogastres</td>
<td>no evidence</td>
<td>Data missing</td>
<td>No evidence</td>
<td>Data missing</td>
<td>Todt and Wanninger 2010</td>
</tr>
<tr>
<td>Polyplacophora</td>
<td>Present</td>
<td>Xenopsin</td>
<td>present</td>
<td>xenopsin</td>
<td>Vöcking et al. 2015</td>
</tr>
<tr>
<td>Cephalopoda</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mono- placophora</td>
<td>Data missing</td>
<td>Data missing</td>
<td>Data missing</td>
<td>Data missing</td>
<td></td>
</tr>
<tr>
<td>Scaphopoda</td>
<td>present</td>
<td>go-opsin</td>
<td>present</td>
<td>go-opsin</td>
<td>Present study</td>
</tr>
<tr>
<td>Gastropoda</td>
<td>present</td>
<td>Data missing</td>
<td>No evidence</td>
<td>Data missing</td>
<td>Nielsen 2004</td>
</tr>
<tr>
<td>Bivalvia</td>
<td>present</td>
<td>Data missing</td>
<td>present</td>
<td>Data missing</td>
<td>Nielsen 2004</td>
</tr>
</tbody>
</table>

No evidence: Taxon has been studied histologically and immunochemically but no photoreceptors were found.

References

Vöcking O, Kourtesis I, Hausen H. Posterior eyespots in larval chitons have a molecular identity similar to anterior cerebral eyes in other bilaterians. EvoDevo. 2015;6:40.
Sanger-sequenced nucleotide read of go-opsin:

```
TTCNTGTGTCAATAGATAGATAATTGGATTGTATGCACTTTGGGCCGTGGCAATTGC
TGTGGGTACTAGGGAGAGACCAAGCGGAATATATCCCCCAGCGGCAGATGCTAAAAAT
ATCAACCCCGTATGGTATCCAGCTATACGTATACGACAATGGTAACCAGTGATATCTTT
TGTAGCCCTTTTCCCCATATCTGGNATGTagCTAACACCATGTCTTGAGTCGGTGATCT
GTGCCTTTTGTGTCGTGATACCAGGGGACACTCTGACATGCNNNTAACAAGGATCTTT
CAGTACCAATATATATGAGTTGAGTAGGAACAATATGAAGATGACAACGCAT
ATTATGATAAGATACAGCTCCCTTGGNATGACCCTGCAATCAATACTGCATGTGCTGCA
AAATGG
```

Predicted amino acid sequence (position 296 is in bold):

```
PFGTTCSIDWHG?KGA VSYIICVVIFILFLPLTVMIYWYVKILV??HVRVSHGITQTKAQIT
DSRHGVSY?PDIGKRATKIIILVTIVYVIAWIPYYGLIFLASAAGGYIPLGLSLVPTAIATQAS
AYNPISYAIIGH
```

Methods

Aen Primer sequences used in the present study

Primers used to amplify the region that translates into a T296 instead of a K296 residue.

Go-opsin forward primer: GAGGAATGGGCTGCTCAT

Go-opsin reverse primer: GACCTTGAACTTCACTGTGCAATAGCATAG

Primers used to amplify template for riboprobe synthesis:
Go-opsin forward primer: CTATCACGTATACGACAATGGTAAC
Go-opsin reverse primer: CAATAAGTATGTACAGATACGCCGTG
Dach forward primer: ACAACTCATCCGTCTACAGAACTT
Dach reverse primer: CTGATCGTCATCTTCATCCTCTGT
Eya forward primer: ACAGAGGTTGGCATTCTGTTGCTG
Eya reverse primer: CATATACATTAGATTACAGCCCGCTGC
MyoV forward primer: CTTTCCCATTGATAATCATATCCATGC
MyoV reverse primer: GATGCTCTTTGATTTAATTGCTGTTAAAC
Pax6 forward primer: AAGGTCACAAAGATTTGCTACGGGAGGC
Pax6 reverse primer: CGAAACAGATGACAGATGCGCATGCGTC
RPGR forward primer: CTCAATGATTTGATAACTTTTTATGATCTCTTCATC
RPGR reverse primer: GAGAGGGTAATAATGGTCAGCTTG
Six1/2 forward primer: GACGATGGCAGGGGTACATG
Six1/2 reverse primer: GTCTGGTAACTACTAAGAGCTGAC
TrypC forward primer: CTGTACCAGACCAGGACCAATAC
TrypC reverse primer: CATGACAGTGTCTCTGTAACACATCTG
Xenopsin forward primer: GTTCCAGAGGGTGACTGGAATG
Xenopsin reverse primer: CTTGGACCCGTGATGCAATAG
Figure S9. *Hox4* expression during the development of the scaphopod *Antalis entalis* as off-target control for the *in situ* hybridization experiments. Anterior faces up in all panels and dorsal faces to the right in lateral views. (a-c) Early trophophore larvae. (d-f) Early mid-stage trophophores. (g-j) Mid-stage trophophores. Scale bars: 100 µm.