Supplementary Material 1: Definition of the segmental coordinate system and the joint coordinate centers.

The segmental coordinate systems were defined as follows:

1) Torso coordinate system:
 \(\overrightarrow{eto1} \) (mediolateral axis) is perpendicular to the plane formed by the four torso markers.
 \(\overrightarrow{eto3} \) (vertical axis) is perpendicular to \(\overrightarrow{eto1} \) and lies in the plane formed by the connecting line between the middle points of the markers STCA/SPT8 and STCR/SPC7 and \(\overrightarrow{eto1} \).
 \(\overrightarrow{eto2} \) (anteroposterior axis) is perpendicular to \(\overrightarrow{eto1} \) and \(\overrightarrow{eto3} \).

2) Shoulder girdle coordinate system:
 \(\overrightarrow{esg1} \) (mediolateral axis) is the connecting line between the left and the right acromion markers.
 \(\overrightarrow{esg3} \) (vertical axis) is perpendicular to \(\overrightarrow{esg1} \) and lies in the plane formed by the connecting line between the GHJC calculated as in Rab et al [16] and the acromion marker and \(\overrightarrow{esg1} \).
 \(\overrightarrow{esg2} \) (anteroposterior axis) is perpendicular to \(\overrightarrow{esg1} \) and \(\overrightarrow{esg3} \).

3) Upper arm coordinate system:
 \(\overrightarrow{eua1} \) (mediolateral axis) corresponds to the functionally estimated EJA.
 \(\overrightarrow{eua3} \) (vertical axis) is perpendicular to \(\overrightarrow{eua1} \) and lies in the plane formed by the GHJC and \(\overrightarrow{eua1} \).
 \(\overrightarrow{eua2} \) (anteroposterior axis) is perpendicular to \(\overrightarrow{eua1} \) and \(\overrightarrow{eua3} \).

4) Forearm coordinate system:
 \(\overrightarrow{efa3} \) (vertical axis) is the connecting line between the WJC and the EJC.
 \(\overrightarrow{efa1} \) (mediolateral axis) is perpendicular to \(\overrightarrow{efa3} \) and lies in the plane formed by the markers WRA and WRB and the EJC.
 \(\overrightarrow{efa2} \) (anteroposterior axis) is perpendicular to \(\overrightarrow{efa1} \) and \(\overrightarrow{efa3} \).

5) Hand coordinate system:
 \(\overrightarrow{eha2} \) (anteroposterior axis) is perpendicular to the plane formed by the four hand markers.
\(\vec{eha3} \) (vertical axis) is perpendicular to \(\vec{eha2} \) and lies in the plane formed by the connecting line between the middle points of the markers DM2/DM5 and CM2/CM5 and \(\vec{eha2} \).

\(\vec{eha1} \) (mediolateral axis) is perpendicular to \(\vec{eha2} \) and \(\vec{eha3} \).

Joint coordinate systems were defined as follows:

1) Sternoclavicular joint coordinate system:
\(\vec{esc1} \) (flexion/extension axis) is fixed at the proximal segment (torso) and corresponds to \(\vec{eto1} \).
\(\vec{esc3} \) (internal/external rotation axis) is fixed at the distal segment (shoulder girdle) and corresponds to \(\vec{esg3} \).
\(\vec{esc2} \) = floating axis (adduction/abduction axis) is perpendicular to \(\vec{esc1} \) and \(\vec{esc3} \).

2) Glenohumeral joint coordinate system:
\(\vec{egh2} \) (adduction/abduction axis) is fixed at the proximal segment (shoulder girdle) and corresponds to \(\vec{esg2} \).
\(\vec{egh3} \) (internal/external rotation axis) is fixed at the distal segment (upper arm) and corresponds to \(\vec{eua3} \).
\(\vec{egh1} \) = floating axis (flexion/extension axis) is perpendicular to \(\vec{egh2} \) and \(\vec{egh3} \).

3) Elbow joint coordinate system:
\(\vec{el1} \) (flexion/extension axis) is fixed at the proximal segment (upper arm) and corresponds to \(\vec{euu1} \).
\(\vec{el3} \) (internal/external rotation axis) is fixed at the distal segment (forearm) and corresponds to \(\vec{efa3} \).
\(\vec{el2} \) = floating axis (adduction/abduction axis) is perpendicular to \(\vec{el1} \) and \(\vec{el3} \).

4) Wrist joint coordinate system:
\(\vec{wr1} \) (flexion/extension axis) is fixed at the proximal segment (forearm) and corresponds to \(\vec{efa1} \).
\(\vec{wr3} \) (internal/external rotation axis) is fixed at the distal segment (hand) and corresponds to \(\vec{eha3} \).
\(\vec{wr2} \) = floating axis (adduction/abduction axis) is perpendicular to \(\vec{wr1} \) and \(\vec{wr3} \).