Supplemental Data Files for:
Measuring sequencer size bias using REcount: a novel method for highly accurate Illumina sequencing-based quantification

I. Supplemental Figures
Fig. S1
Initial and re-pooled even plasmid pool data.

Fig. S2
Lack of correlation between BC and V4 PCR.

Fig. S3
Droplet digital PCR assay validation and data.

Fig. S4
Assessment of REcount measurements of a staggered plasmid pool.

Fig. S5
Illumina size standard pool composition and data.

Fig. S6
Context-specific effects on clustering of size standards.

Fig. S7
Size distribution of pooled RAD-Seq library.

Fig. S8
Insert size distribution, missing genotype calls, and mean read depth for RAD-Seq samples.

Fig. S9
Insert size distributions of individual ATAC-Seq libraries.

Fig. S10
Distribution of mapped reads at the Fgfr4 locus at different subsampling depths.

II. Supplemental Files
(Available at: https://github.com/darylgohl/REcount/tree/master/Supplemental_Files)
1. Supplemental_File_1.fasta
 Sequences of the synthetic DNA standards used to construct the even and staggered plasmid pools.

2. Supplemental_File_2.fasta
 Sequences of the synthetic DNA used to construct the orthogonal restriction enzyme plasmids.

3. Supplemental_File_3.fasta
 Sequences of the synthetic DNA inserts from the Illumina size standard plasmids.

4. Supplemental_File_4.xlsx
A table of the primers used for the ddPCR assays in this study.

5. Supplemental_File_5.fasta
 REcount barcode mapping file from the even and staggered plasmid pools.

6. Supplemental_File_6.fasta
 Expected REcount barcodes for orthogonal enzyme multiplexing tests.

7. Supplemental_File_7.fasta
 Normalization barcode mapping file for Illumina size standards.

8. Supplemental_File_8.fasta
 Variable barcode mapping file for Illumina size standards.

9. Supplemental_File_9.fasta
 Reference sequences for V4 PCR mapping.

10. REcount_split_fastq_Q-score_plots.py
 Script for analyzing Q-scores of synthetic size standards.

11. ATAC_Seq_Sam_Subsampler.py
 Python script for used for subsampling SAM flies for ATAC-Seq analysis.

12. ATAC_Seq_Split_Nucleosomes.py
 Python script for used for splitting SAM flies into non-nucleosomal and nucleosomal bins for ATAC-Seq analysis.
Fig. S1. Initial and re-pooled even plasmid pool data. REcount measurements of an initial attempt at even plasmid pooling based on PicoGreen data, and a subsequent re-pooling informed by the initial pool sequencing data.
Fig. S2. Lack of correlation between BC and V4 PCR. Scatterplots of BC and V4 abundance data for the even plasmid pool, when amplified for A) 10, B) 20, C) 30, or D) 40 PCR cycles.
Fig. S3. Droplet digital PCR assay validation and data. A) Schematic depicting the two ddPCR assays that were developed for each construct in the plasmid pool. B) qPCR data showing the specificity of each assay for the target construct as assessed by amplification of each individual plasmid, the even plasmid pool, or a negative control, with each primer pair. C) Correlation between ddPCR data and REcount quantification for the original even plasmid pool. D) ddPCR counts for the re-pooled even plasmid pool. Bars are the average of triplicates of the forward and reverse ddPCR assays where data could be generated for both assays, or just the forward or reverse assay in the case where one assay failed. *For plasmid 16, both the forward and reverse assays failed and thus no ddPCR information is available for this construct. E) Correlation between ddPCR data and REcount quantification for the re-pooled even plasmid pool. F-I) Correlation between ddPCR data and BC PCR-based quantification of the re-pooled even plasmid pool amplified for F) 10, G) 20, H) 30, I) 40 PCR cycles.
Fig. S4. Assessment of REcount measurements of a staggered plasmid pool. A) Root mean squared deviation from expected values when the staggered plasmid pool is measured using REcount, and varying cycles of PCR amplification of the barcode construct. B) Comparison of REcount and PCR-based measurements of the staggered plasmid pool. C) Average measured representation of constructs pooled at different levels relative to expected values when measured using REcount or varying cycles of PCR. D) Correlation of ddPCR data and REcount measurements of the staggered plasmid pool. E-H) Correlation between ddPCR data and BC PCR-based quantification of the staggered plasmid pool amplified for E) 10, E) 20, G) 30, H) 40 PCR cycles. Error bars are +/- s.e.m.
Fig. S5. Illumina size standard pool composition and data. A) Composition of the Illumina size standard constructs, which consist of three different backbone molecules (16S rRNA, GAPDH, and Tubulin), ranging from 150 bp to 1500 bp in length. B) Size bias profiles of the iSeq (n=1 flow cell), MiSeq (n=6 flow cells), HiSeq 2500 Rapid (n=1 flow cell, 2 lanes), HiSeq 2500 High Output (HO, n=2 flow cells, 10 lanes), HiSeq 4000 (n=3 flow cells, 6 lanes), NextSeq (n=4 flow cells), and NovaSeq (n=4 flow cells, 4 lanes) sequencers. C) Size bias profiles restricted to fragment lengths of 900 bp or less. D) Platform and construct-specific mean quality scores for the Illumina size standard constructs for the first 50 bp of read 1.
Fig. S6. Context-specific effects on clustering of size standards. A) Between lane and between flow cell differences in size bias profiles for HiSeq2500 Rapid Run (on-board clustering) and HiSeq2500 High Output (cBot clustering). B) Template-specific size biases
observed on the HiSeq2500 in Rapid Run mode. C) Differences in size standard measurements for three HiSeq 4000 runs (3 different flow cells). D) Fragment size profile of the library run together with the size standards in run 1 of the HiSeq 4000. E) Fragment size profile of the library run together with the size standards in run 2 of the HiSeq 4000. F) Fragment size profile of the library run together with the size standards in run 3 of the HiSeq 4000. G) Differences in size standard measurements for run 1 of the HiSeq 4000 and run 1 of the NextSeq. H) Fragment size profile of the library run together with the size standards in run 1 of the NextSeq.
Fig. S7. Size distribution of pooled RAD-Seq library. Agilent Bioanalyzer trace for the 11 pooled RAD-Seq libraries.
Fig. S8. Insert size distribution, missing genotype calls, and mean read depth for RAD-Seq samples. A) Insert size distributions for the 11 RAD-Seq libraries sequenced on either the HiSeq or the NextSeq. B) Fraction of missing genotype calls for RAD-Seq libraries sequenced on the HiSeq. C) Fraction of missing genotype calls for RAD-Seq libraries sequenced on the NextSeq. D) Mean read depth of markers for RAD-Seq libraries sequenced on the HiSeq. E) Mean read depth of markers for RAD-Seq libraries sequenced on the NextSeq.
Fig. S9. Insert size distributions of individual ATAC-Seq libraries. A-F) Insert size distributions for the 6 individual ATAC-Seq libraries sequenced on the HiSeq or the NextSeq.
Fig. S10. Distribution of mapped reads at the Fgfr4 locus at different subsampling depths. Effect of read depth on PAX3-responsive enhancer peaks.