Supplementary Information for GoIFISH: A system for the quantification of single cell heterogeneity from IFISH images

Trinh et al, 2014

July 24, 2014

Contents

1 Detailed description of methods 3
 1.1 Immunostaining Protocol ... 3
 1.2 FISH probes preparation ... 3

2 Description of Data attained from images: Comparative study between GoIFISH, Cellprofiler and Columbus 5
 2.1 Precision Recall Data .. 5
 2.2 Single Cell Measurements ... 8

3 Cell Detection: Precision and Recall. Capturing the average of an image 15
 3.1 Nuclear Detection .. 15
 3.2 HER2 membrane Detection ... 18
 3.2.1 Performance ... 18
 3.3 Spot Detection .. 21
 3.3.1 Single Spots ... 21
 3.3.2 ERBB2 ... 25
 3.4 Figure2 .. 30

4 Biological comparison: Positivity and Intensity 35
 4.1 ER Intensity Comparisons ... 35
 4.1.1 Searching for trend in individual samples 35
 4.1.2 Anova to test for direct comparability 38
 4.1.3 Combining All Samples 41
 4.2 HER2 protein expression ... 45
 4.2.1 HER2 positivity and negativity: Is there a difference between these samples? ... 45
 4.2.2 Grouping all samples and comparing positivity vs negativity ... 50
4.2.3 HER2 membrane completeness .. 54
4.2.4 Combining all samples together .. 58
4.2.5 Looking at Higher Order Moments 60

5 Accuracy in Spot Detection: Measuring intra-tumour heterogeneity 73
 5.1 Correlating copy number between raw and counted values 73
 5.2 Direct Comparison to area ... 86
 5.3 Combining Area and Intensity .. 93

6 Inferring Sample Diversity .. 96
 6.1 ER and HER2 .. 96
 6.2 HER2 copy number vs protein .. 99

7 Software Performance .. 104
 7.1 Classification Performance .. 104
 7.1.1 Differentiating between luminal and epithelial cells 104
 7.1.2 Tumour vs Stromal Cells ... 107
 7.2 Background Intensity Variation ... 111
 7.2.1 Heterogeneity in background regions 114
 7.3 Benchmarking Differences in Manual Editing 116

8 Session info: R-packages and their versions used for this analysis 120
1 Detailed description of methods

1.1 Immunostaining Protocol

The FFPE tissue blocks were sectioned 3-4 µM thick and put on superfrost plus slides (Thermo scientific, art nr J1800MNZ) and baked at 60°C for 45 min and 37°C over night (ON). The sections were deparaffinized for 2x10 min in xylene, followed by denaturation in 2x 3 min Abs. EtOH, 2x3 min in 95 % EtOH and dH2O before heat induced antigen retrieval in 1x Citrate buffer, pH 6 for 40 min in a steamer, cooled down for 30 min at RT. Washed 2x3 min in dH2O and 3 min in 1x PBS. The tissue was digested with 0.000005 % pepsin (diluted in 0.02 M HCL) for 10 min at 37 degree, followed by 2x3 min wash in dH2O and 3 min in 1x PBS. 10 min in RT with 10 prosent goat serum (GS), followed by primary C-erbB2 antibody (NCL-L-CB11, Novocastro) incubation, 1/100 diluted in 5 % GS for 60 min (See Table 1 for list of antibodies). Washed 2x 3 min in PBST (1x PBS+ 0.001 % tween 40). 30 min incubation with secondary biotinylated antibody (goat anti mouse IgG,(biotin conjugated),M30115, Life Technologies), 1/100 dilution in PBS for 30 min. Primary ER antibody incubation 1/100 diluted in 5 % GS, incubated for 60 min, washed 2x 3 min in PBST before 30 min incubation with fluoresence labelled secondary antibodies (streptavidin Alexa fluore 488 goat anti mouse IgG(Y1)(S-11223, Life Technologies), and Alexa Fluor 594 anti mouse(A-11005, Life Technologies) (1/100 diluted in 10 pros% GS)). Washed 3x3 min in PBST, 3 min in dH2O. All antibodies were incubated in humidiation chamber at RT. The samples were post fixed in fresh made ice cold carnoy's fix (36 ml abs EtOH and 12 ml acetic acid), washed 3 min in dH2O and rehydrated in graded alcohol and air dried before adding the FISH probes and coverslides before denaturation at 75°C for 2 min and hybridized at 37°C ON in a hybridizer (DAKO hybridizer). After hybridization the coverslides were removed and the slides washed for 2 min in post hybridization buffer 1 (0.4 xSSC/0.3 % igepal) at RT, followed by 2 min post hybridization buffer 1 at 74°C for exact 2 min, and 2 min in post hybridization buffer 2 (2xSSC/0.1% igepal) and 3 min in 2xSSC, air dried and mounted with DAPI counterstain and microscoped and photographed with 25 z-stacks in a Axiovision M1 microscope.

1.2 FISH probes preparation

The bacterial artificial chromosomes (BAC) of interest were selected from the UCSC Genome Browser and purchased as plasmid inserts in E.Coli from Source Bioscience (RP11-170N19,RP11-909L10, RP11-94L15) (See Table 2). The bacteria were cultivated according to the manufacturer instructions. The plasmids were isolated with plasmid maxi kit (Qiagen) and labelled with fluorescent dUTPs by nick translation (Nick translation kit, Invitrogen); HER2 was labelled with spectrum Orange (Abbott) dUTP and CEP17 with HyPer5-dCTP (GE Healthcare dUTP).

For a stronger signal two overlapping BAC probes were used. To validate the correct position of the probes, the probes were labelled with new fluoresences and hybridized together with the PathVysion HER-2 DNA probe kit from Abbott, approved for clinical
use. The BAC probes overlapped nicely with Abbott’s commercial probes (data not shown).

Table 1: Antibody information

<table>
<thead>
<tr>
<th>Antibodies</th>
<th>product</th>
<th>manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>c-erbB2 oncoprotein</td>
<td>NCL-L-CB11</td>
<td>Novocastro/Leica</td>
</tr>
<tr>
<td>Estrogen Receptor</td>
<td>NCL-L-ER-6F11</td>
<td>Novocastro/Leica</td>
</tr>
<tr>
<td>Goat anti mouse, IgG (biotin)</td>
<td>M30115</td>
<td>Life technologies</td>
</tr>
<tr>
<td>Alexa Fluor Goat Anti mouse IgG</td>
<td>A-11005</td>
<td>Life technologies</td>
</tr>
<tr>
<td>Streptavidin Alexa Fluor 488 conjugate</td>
<td>S-11223</td>
<td>Life technologies</td>
</tr>
</tbody>
</table>

Table 2: BAC probe information

<table>
<thead>
<tr>
<th>Name</th>
<th>Clone ID</th>
<th>Location</th>
<th>Fluorescence</th>
<th>manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cent17</td>
<td>RP11-720N19</td>
<td>17q11.1</td>
<td>Spectrum orange</td>
<td>Abbott</td>
</tr>
<tr>
<td>Cent17</td>
<td>RP11-909L10</td>
<td>17q11.1-11.2</td>
<td>Spectrum orange</td>
<td>Abbott</td>
</tr>
<tr>
<td>HER2</td>
<td>RP11-94L15</td>
<td>17q12</td>
<td>Cy-5</td>
<td>GE healthcare</td>
</tr>
<tr>
<td>HER2</td>
<td>RP11-909L6</td>
<td>17q12</td>
<td>Cy-5</td>
<td>GE healthcare</td>
</tr>
</tbody>
</table>
2 Description of Data attained from images: Comparative study between GoFISH, Cellprofiler and Columbus

The following packages are required for statistical analysis in R:

```r
## Source the functions required to transform data
source("functions/readData.R")
source("functions/functions.R")
library("MASS")
library("knitr")
library("clinfun")
library("RColorBrewer")
library("plotrix")
library("scales")

## Attaching package: 'scales'
##
## The following object is masked from 'package:plotrix':
##
## rescale
library("cluster")
library("e1071")
library("ggplot2")
library("lattice")
library("latticeExtra")

## Attaching package: 'latticeExtra'
##
## The following object is masked from 'package:ggplot2':
##
## layer
```

2.1 Precision Recall Data

The first thing we want to look at is Precision-Recall Data. Given a particular folder name, we run `read.PrecisionRecall` to collate the information into a list of matrices:

```r
tempfile = read.PrecisionRecall("data/New_PRTests")
summary(tempfile)
```
```r
load("data/Collated_PR_Data.RData")
summary(PR_ERBB2)

## NCorrect UnderSeg OverSeg FalseNeg
## Min.  : 11.0 Min.  : 2.0 Min.  : 0.00 Min.  : 8.0
## 1st Qu.: 38.0 1st Qu.: 6.0 1st Qu.: 0.00 1st Qu.: 25.5
## Median : 55.5 Median : 9.0 Median : 1.00 Median : 42.0
## Mean  : 56.0 Mean  :19.5 Mean  : 5.70 Mean  : 74.5
## 3rd Qu.: 67.2 3rd Qu.:21.2 3rd Qu.: 1.75 3rd Qu.:123.2
## Max.  :120.0 Max.  :81.0 Max.  :46.00 Max.  :236.0

## FalsePos AreaOverlap AreaDiff SolidDiff
## Min.  :10.0 Min.  :0.159 Min.  :0.415 Min.  :0.852
## 1st Qu.:19.5 1st Qu.:0.348 1st Qu.:1.193 1st Qu.:0.914
## Median :22.0 Median :0.446 Median :1.905 Median :0.930
## Mean  :32.1 Mean  :0.494 Mean  :1.937 Mean  :0.938
## 3rd Qu.:45.0 3rd Qu.:0.573 3rd Qu.:2.006 3rd Qu.:0.967
## Max.  :66.0 Max.  :0.994 Max.  :5.766 Max.  :1.001

## PerimDiff APDiff LargeArea SmallArea
## Min.  :0.674 Min.  :0.697 Min.  : 0.0 Min.  : 0
## 1st Qu.:1.456 1st Qu.:0.851 1st Qu.: 7.5 1st Qu.: 0
## Median :1.774 Median :0.924 Median : 9.5 Median : 0
## Mean  :1.973 Mean  :1.002 Mean  :13.4 Mean  : 2
```
This returns an object which contains 4 Precision-Recall objects, relating to the 4 main segmentations used (DAPI, HER2 membrane, cent17 and ERBB2). The function also returns this as a list.

If we look at each of the Precision-Recall objects, it is a list of matrices with names describing how the data was attained. PR_ERBB2 is considered both as individual spots as well as clusters of spots. Each method will have the following parameters:

NCorrect: The number of cells which have been correctly identified

UnderSeg: Number of cells which have been undersegmented. These are "false negatives"

OverSeg: Number of oversegmented cells. These are "false positives"

FalseNeg: Number of cells which have been completely missed (non segmentation error)

FalsePos: Cells which are detected by image analysis software but not present in the original image. These may be artefacts, or cells with too low intensity in the image.

AreaOverlap: Comparison of how well a segmented cell overlaps with the corresponding cell in the true standard. A score of 1 indicates they overlap 100%, and a score of 0 indicates poor overlap. We expect samples with high numbers of binarisation errors to have a lower overlap for instance.

AreaDiff: Calculated as the difference between areas in the image and the true standard. (Nsegmented/Ntrue) We could ideally see samples around 1 for perfect segmentation. Samples with high values have larger cell boundaries in the automated image, and negative values indicate the size is smaller.

PerimDiff: Difference in perimeter, calculated as the ratio between the segmented cell and the gold standard. Ideally, this value should be 1. Note that some cells might have the same area but different perimeters. This suggests that the segmented image has cells of the correct area, however, their outlines would differ greatly, accounting for the binarisation errors or lower area overlap.

SolidDiff: Difference in solidity, calculated as the ratio between the segmented cell and the gold standard. Ideally, this value should be 1. This looks at how well the segment fits into a sphere, or solid a segment is.

APDiff: Difference in the area to perimeter ratio between the segmented cell and the gold standard. Ideally, this value should be one.

LargeArea: Item is much larger (2x or more) compared to the actual cell size.

SmallArea: Item is much smaller (quarter of size or less) compared to the actual cell size.
2.2 Single Cell Measurements

Single cell measurements were collected from Columbus, CellProfiler and GOIFISH. This includes protein intensity measurements, as well as spot areas and intensities. These are mapped to a true standard which is pathologist scored. We can collate this information using `read.IFISHInfo`.

```r
Output = read.IFISHInfo("data/Protein_expression_intensities/", 
                        "data/CellManualScores/")

## Warning: - not meaningful for factors
## Warning: - not meaningful for factors

load("data/Compiled_CellData.RData")
summary(Output)
```

```r
## Length Class Mode
## ManIFISH 10 -none- list
## ColumbusC_CN 10 -none- list
## ColumbusC_Protein 10 -none- list
## CP_CN 10 -none- list
## CP_Protein 10 -none- list
## ColumbusM_CN 10 -none- list
## ColumbusM_Protein 10 -none- list
## GF_CN 10 -none- list
## GF_Protein 10 -none- list
## Columbus_Protein 10 -none- list
## Columbus_CN 10 -none- list
## ManGF_CN 10 -none- list
## ManGF_Protein 10 -none- list
## ManGF_Prot_notscored 10 -none- list
```

```r
summary(ManIFISH)
```

```r
## Length Class Mode
## # 6361 20 data.frame list
## # 6370 20 data.frame list
## # 7350 20 data.frame list
## # 7360 20 data.frame list
## # 7364 20 data.frame list
## # 7417 20 data.frame list
## # 7435 20 data.frame list
## # 7588 20 data.frame list
## # 7619 20 data.frame list
## # 7641 20 data.frame list
```
summary(ManIFISH$'6361')

<table>
<thead>
<tr>
<th></th>
<th>CellNo</th>
<th>GOIFISH</th>
<th>GOIFISHUnder</th>
<th>ManGoIFISH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>1.0</td>
<td>2.0</td>
<td>1</td>
<td>1.0</td>
</tr>
<tr>
<td>1st Qu.:</td>
<td>10.5</td>
<td>13.0</td>
<td>1</td>
<td>12.5</td>
</tr>
<tr>
<td>Median</td>
<td>20.0</td>
<td>31.0</td>
<td>1</td>
<td>34.0</td>
</tr>
<tr>
<td>Mean</td>
<td>20.0</td>
<td>27.9</td>
<td>1</td>
<td>29.9</td>
</tr>
<tr>
<td>3rd Qu.:</td>
<td>29.5</td>
<td>43.0</td>
<td>1</td>
<td>46.5</td>
</tr>
<tr>
<td>Max.</td>
<td>39.0</td>
<td>57.0</td>
<td>1</td>
<td>56.0</td>
</tr>
<tr>
<td>NA's</td>
<td>20</td>
<td>4</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>ManGoIFISHUnder</th>
<th>ColumbusC</th>
<th>ColCUnder</th>
<th>CellProfiler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode:logical</td>
<td>Min. : 1.0</td>
<td>Min. :0.000</td>
<td>13 : 2</td>
<td></td>
</tr>
<tr>
<td>NA's:39</td>
<td>1st Qu.:14.0</td>
<td>1st Qu.:0.000</td>
<td>58 : 2</td>
<td></td>
</tr>
<tr>
<td>Mean :19.5</td>
<td>Median :21.0</td>
<td>Median :0.000</td>
<td>12 : 1</td>
<td></td>
</tr>
<tr>
<td>3rd Qu.:25.0</td>
<td>Max. :34.0</td>
<td>Max. :1.000</td>
<td>(Other):30</td>
<td></td>
</tr>
<tr>
<td>NA's :2</td>
<td>NA's : 2</td>
<td>NA's :2</td>
<td>NA's :2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>CP_Under</th>
<th>ColumbusM</th>
<th>ColMUnder</th>
<th>ERBB2.CN.true</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>0.000</td>
<td>2</td>
<td>0.000</td>
<td>1.00</td>
</tr>
<tr>
<td>1st Qu.:</td>
<td>0.000</td>
<td>51</td>
<td>0.000</td>
<td>1.00</td>
</tr>
<tr>
<td>Median</td>
<td>0.000</td>
<td>1</td>
<td>Median :0.000</td>
<td>Median :2.00</td>
</tr>
<tr>
<td>Mean :0.216</td>
<td>1</td>
<td>Mean :0.135</td>
<td>Mean :1.85</td>
<td></td>
</tr>
<tr>
<td>3rd Qu.:0.000</td>
<td>14</td>
<td>3rd Qu.:0.000</td>
<td>3rd Qu.:2.00</td>
<td></td>
</tr>
<tr>
<td>Max. :1.000</td>
<td>(Other):30</td>
<td>Max. :1.000</td>
<td>Max. :4.00</td>
<td></td>
</tr>
<tr>
<td>NA's</td>
<td>2</td>
<td>NA's :2</td>
<td>NA's :2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>cent17.CN.true</th>
<th>ERBB2.score</th>
<th>cent17.score</th>
<th>ER.score</th>
<th>HER2.prot.score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>1.00</td>
<td>scat :39</td>
<td>scat :39</td>
<td>-ve :14</td>
<td>-ve: 0</td>
</tr>
<tr>
<td>1st Qu.:</td>
<td>1.00</td>
<td>clus: 0</td>
<td>clus: 0</td>
<td>weak: 8</td>
<td>+ve:39</td>
</tr>
<tr>
<td>Median</td>
<td>1.00</td>
<td>mix : 0</td>
<td>mix : 0</td>
<td>mod : 6</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>1.56</td>
<td></td>
<td>+ve :11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3rd Qu.:</td>
<td>2.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max.</td>
<td>3.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>HER2.membrane.score</th>
<th>ERBB2.CN2</th>
<th>cent17.CN2</th>
</tr>
</thead>
<tbody>
<tr>
<td>absent :</td>
<td>0</td>
<td>Min. :1.00</td>
<td>Min. :1.00</td>
</tr>
<tr>
<td>broken :</td>
<td>10</td>
<td>1st Qu.:1.00</td>
<td>1st Qu.:1.00</td>
</tr>
<tr>
<td>complete :29</td>
<td>Median :2.00</td>
<td>Median :1.00</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>1.85</td>
<td>Mean :1.56</td>
<td></td>
</tr>
<tr>
<td>3rd Qu.:</td>
<td>2.00</td>
<td>3rd Qu.:2.00</td>
<td></td>
</tr>
<tr>
<td>Max.</td>
<td>4.00</td>
<td>Max. :3.00</td>
<td></td>
</tr>
</tbody>
</table>

The output of the function contains a Manually Scored Matrix, and a series of matrices.
which describes the method used and whether the output is IF (Protein) or FISH (CN).
Let’s have a quick look at the **ManIFISH** parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CellNo</td>
<td>Cell number assigned in manual segmentation</td>
</tr>
<tr>
<td>GOiFISH</td>
<td>Corresponding cell number in GOiFISH</td>
</tr>
<tr>
<td>GOiFISHUnder</td>
<td>Is the cell poorly segmented in GoIFISH.</td>
</tr>
<tr>
<td>ColumbusC</td>
<td>Corresponding cell number in Columbus</td>
</tr>
<tr>
<td>ColCUnder</td>
<td>Index of [0,1] to indicate whether the cell is undersegmented (1 is yes)</td>
</tr>
<tr>
<td>CellProfiler</td>
<td>Cell number of corresponding CellProfiler segmentation</td>
</tr>
<tr>
<td>CP_Under</td>
<td>Index of [0,1] to indicate whether the cell is undersegmented (1 is yes)</td>
</tr>
<tr>
<td>ColumbusM</td>
<td>Cell number of corresponding ColumbusC segmentation CURRENTLY EMPTY</td>
</tr>
<tr>
<td>ColMUnder</td>
<td>Index of [0,1] to indicate whether the cell is undersegmented (1 is yes)</td>
</tr>
<tr>
<td>ERBB2.CN.true</td>
<td>Manual ERBB2 copy number counts</td>
</tr>
<tr>
<td>cent17.CN.true</td>
<td>Manual cent17 copy number counts</td>
</tr>
<tr>
<td>ERBB2.score</td>
<td>Arrangement of ERBB2 spots: 1 is scattered, 2 is clustered and 3 is a mix</td>
</tr>
<tr>
<td>cent17.score</td>
<td>Arrangement of cent17 spots: 1 is scattered, 2 is clustered and 3 is a mix</td>
</tr>
<tr>
<td>ER.score</td>
<td>ER nuclear intensity: 0 is neg, 1 is weak, 2 moderate, 3 is strong</td>
</tr>
<tr>
<td>HER2.prot.score</td>
<td>HER2 protein intensity: 0 is negative, 1 is positive</td>
</tr>
<tr>
<td>HER2.membrane.score</td>
<td>Continuity of HER2 membrane: either "absent", "broken" or "complete"</td>
</tr>
<tr>
<td>ERBB2.CN2</td>
<td>ERBB2 copy number - amplified is given a value of 22 for analysis</td>
</tr>
<tr>
<td>cent17.CN2</td>
<td>cent17 copy number - amplified is given a value of 22 for analysis</td>
</tr>
</tbody>
</table>

Using the previous command `read.IFISHInfo`, we also get protein and copy number information per cell

```r
summary(Output$GF_Protein$"6361")
```
<table>
<thead>
<tr>
<th></th>
<th>GOIFISH</th>
<th>CellNo</th>
<th>GOIFISHUnder</th>
<th>ER.score</th>
<th>HER2.prot.score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>2.0</td>
<td>1.0</td>
<td>1</td>
<td>-ve :14</td>
<td>-ve :0</td>
</tr>
<tr>
<td>1st Qu.</td>
<td>13.0</td>
<td>10.5</td>
<td>1</td>
<td>weak :8</td>
<td>+ve :39</td>
</tr>
<tr>
<td>Median</td>
<td>31.0</td>
<td>20.0</td>
<td>1</td>
<td>mod :6</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>27.9</td>
<td>20.0</td>
<td>1</td>
<td>+ve :11</td>
<td></td>
</tr>
<tr>
<td>3rd Qu.</td>
<td>43.0</td>
<td>29.5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max.</td>
<td>57.0</td>
<td>39.0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NA's</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>HER2.membrane.score</th>
<th>DAPI.Area</th>
<th>DAPIPerim</th>
<th>DAPIInt</th>
</tr>
</thead>
<tbody>
<tr>
<td>absent</td>
<td>0</td>
<td>1908</td>
<td>177</td>
<td>948</td>
</tr>
<tr>
<td>broken</td>
<td>10</td>
<td>6655</td>
<td>370</td>
<td>1219</td>
</tr>
<tr>
<td>complete</td>
<td>29</td>
<td>8375</td>
<td>407</td>
<td>1396</td>
</tr>
<tr>
<td>Mean</td>
<td>8040</td>
<td>400</td>
<td>1368</td>
<td></td>
</tr>
<tr>
<td>3rd Qu.</td>
<td>9540</td>
<td>444</td>
<td>1480</td>
<td></td>
</tr>
<tr>
<td>Max.</td>
<td>13863</td>
<td>578</td>
<td>1836</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>DAPI_backAdj</th>
<th>DAPI_nucInt</th>
<th>HER2.Area</th>
<th>HER2.Solidity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>770</td>
<td>438</td>
<td>2219</td>
<td>0.702</td>
</tr>
<tr>
<td>1st Qu.</td>
<td>1041</td>
<td>772</td>
<td>7450</td>
<td>0.834</td>
</tr>
<tr>
<td>Median</td>
<td>1218</td>
<td>969</td>
<td>9944</td>
<td>0.863</td>
</tr>
<tr>
<td>Mean</td>
<td>1191</td>
<td>933</td>
<td>9332</td>
<td>0.863</td>
</tr>
<tr>
<td>3rd Qu.</td>
<td>1303</td>
<td>944</td>
<td>1396</td>
<td>0.899</td>
</tr>
<tr>
<td>Max.</td>
<td>1658</td>
<td>1407</td>
<td>15950</td>
<td>0.954</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>HER2.Perimeter</th>
<th>HER2_cytoint</th>
<th>HER2_memInt</th>
<th>HER2_backAdj</th>
<th>ER_Int</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>190</td>
<td>204</td>
<td>2219</td>
<td>125</td>
<td>948</td>
</tr>
<tr>
<td>1st Qu.</td>
<td>410</td>
<td>235</td>
<td>281</td>
<td>174</td>
<td>113</td>
</tr>
<tr>
<td>Median</td>
<td>493</td>
<td>253</td>
<td>309</td>
<td>202</td>
<td>234</td>
</tr>
<tr>
<td>Mean</td>
<td>480</td>
<td>258</td>
<td>310</td>
<td>203</td>
<td>236</td>
</tr>
<tr>
<td>3rd Qu.</td>
<td>525</td>
<td>268</td>
<td>341</td>
<td>235</td>
<td>308</td>
</tr>
<tr>
<td>Max.</td>
<td>688</td>
<td>384</td>
<td>419</td>
<td>313</td>
<td>518</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>ER_backAdj</th>
<th>ER_nucInt</th>
<th>HER2_var</th>
<th>HER2_range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>19.1</td>
<td>-41.80</td>
<td>2423</td>
<td>49.2</td>
</tr>
<tr>
<td>1st Qu.</td>
<td>46.8</td>
<td>7.91</td>
<td>3284</td>
<td>57.3</td>
</tr>
<tr>
<td>Median</td>
<td>139.6</td>
<td>47.89</td>
<td>5026</td>
<td>70.9</td>
</tr>
<tr>
<td>Mean</td>
<td>141.8</td>
<td>72.43</td>
<td>5422</td>
<td>71.7</td>
</tr>
<tr>
<td>3rd Qu.</td>
<td>213.3</td>
<td>112.64</td>
<td>6838</td>
<td>82.7</td>
</tr>
<tr>
<td>Max.</td>
<td>423.8</td>
<td>260.34</td>
<td>11136</td>
<td>105.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>HER2_skewness</th>
<th>HER2_SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>-0.6439</td>
<td>49.2</td>
</tr>
<tr>
<td>1st Qu.</td>
<td>0.0856</td>
<td>57.3</td>
</tr>
</tbody>
</table>
Median : 0.4704 Median : 70.9
Mean : 0.4041 Mean : 71.7
3rd Qu.: 0.6842 3rd Qu.: 82.7
Max. : 1.4777 Max. :105.5
##
summary(OutputCP_CN"6361")

<table>
<thead>
<tr>
<th></th>
<th>CellProfiler</th>
<th>CellNo</th>
<th>CP_Under</th>
<th>cent17.CN.true</th>
<th>cent17.score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>1.00</td>
<td>Min.</td>
<td>:0.00</td>
<td>Min.</td>
<td>:1.00</td>
</tr>
<tr>
<td>1st Qu.</td>
<td>1.00</td>
<td>1st Qu.</td>
<td>:1.00</td>
<td>1st Qu.</td>
<td>:1.00</td>
</tr>
<tr>
<td>Median</td>
<td>1.00</td>
<td>Median</td>
<td>:1.00</td>
<td>Median</td>
<td>:1.00</td>
</tr>
<tr>
<td>Mean</td>
<td>1.56</td>
<td>Mean</td>
<td>:1.56</td>
<td>Mean</td>
<td>:1.00</td>
</tr>
<tr>
<td>3rd Qu.</td>
<td>2.00</td>
<td>3rd Qu.</td>
<td>:2.00</td>
<td>3rd Qu.</td>
<td>:2.00</td>
</tr>
<tr>
<td>Max.</td>
<td>3.00</td>
<td>Max.</td>
<td>:3.00</td>
<td>Max.</td>
<td>:3.00</td>
</tr>
<tr>
<td>(Other)</td>
<td>30</td>
<td>Max.</td>
<td>:39.0</td>
<td>Max.</td>
<td>:1.00</td>
</tr>
<tr>
<td>NA's</td>
<td>2</td>
<td>NA's</td>
<td>:2</td>
<td>NA's</td>
<td>:2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>cent17.CN2</th>
<th>cent17_CN_spot</th>
<th>cent17_Int</th>
<th>cent17_Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>1.00</td>
<td>Min.</td>
<td>:0.00</td>
<td>Min.</td>
</tr>
<tr>
<td>1st Qu.</td>
<td>1.00</td>
<td>1st Qu.</td>
<td>:1.00</td>
<td>1st Qu.</td>
</tr>
<tr>
<td>Median</td>
<td>1.00</td>
<td>Median</td>
<td>:1.00</td>
<td>Median</td>
</tr>
<tr>
<td>Mean</td>
<td>1.56</td>
<td>Mean</td>
<td>:1.43</td>
<td>Mean</td>
</tr>
<tr>
<td>3rd Qu.</td>
<td>2.00</td>
<td>3rd Qu.</td>
<td>:2.00</td>
<td>3rd Qu.</td>
</tr>
<tr>
<td>Max.</td>
<td>3.00</td>
<td>Max.</td>
<td>:4.00</td>
<td>Max.</td>
</tr>
<tr>
<td>NA's</td>
<td>2</td>
<td>NA's</td>
<td>:8</td>
<td>NA's</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>ERBB2.CN.true</th>
<th>ERBB2.score</th>
<th>ERBB2.CN2</th>
<th>ERBB2_CN_spot</th>
<th>ERBB2_Int</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>1.00</td>
<td>Min.</td>
<td>:1.00</td>
<td>Min.</td>
<td>:0.00</td>
</tr>
<tr>
<td>1st Qu.</td>
<td>1.00</td>
<td>1st Qu.</td>
<td>:1.00</td>
<td>1st Qu.</td>
<td>:1.00</td>
</tr>
<tr>
<td>Median</td>
<td>2.00</td>
<td>Median</td>
<td>:2.00</td>
<td>Median</td>
<td>:2.00</td>
</tr>
<tr>
<td>Mean</td>
<td>1.85</td>
<td>Mean</td>
<td>:1.85</td>
<td>Mean</td>
<td>:2.51</td>
</tr>
<tr>
<td>3rd Qu.</td>
<td>2.00</td>
<td>3rd Qu.</td>
<td>:2.00</td>
<td>3rd Qu.</td>
<td></td>
</tr>
<tr>
<td>Max.</td>
<td>4.00</td>
<td>Max.</td>
<td>:4.00</td>
<td>Max.</td>
<td></td>
</tr>
<tr>
<td>NA's</td>
<td>2</td>
<td>NA's</td>
<td>:8</td>
<td>NA's</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>ERBB2.Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>26.0</td>
</tr>
<tr>
<td>1st Qu.</td>
<td>61.2</td>
</tr>
<tr>
<td>Median</td>
<td>93.0</td>
</tr>
<tr>
<td>Mean</td>
<td>117.3</td>
</tr>
<tr>
<td>3rd Qu.</td>
<td>163.5</td>
</tr>
<tr>
<td>Max.</td>
<td>294.0</td>
</tr>
<tr>
<td>NA's</td>
<td>5</td>
</tr>
</tbody>
</table>

Let’s look at the protein information first: There are 10 items (Corresponding to the 10 samples used), and contains the following features (Manually scored features are also present for ease in analysis later)
CellProfiler Cell No. This column would be "ColumbusC" "GoIFISH" etc in the respective analyses

CellNo Manual cell number

CP_Under is the cell undersegmented (and to be excluded from later analysis)

DAPI_Area area of nuclei

DAPI_Int average DAPI intensity within the nuclei

CytoArea area of cytoplasmic region

HER2_cytoint HER2 average Intensity of the cytoplasmic region.

ER.score Manual score

HER2.prot.score Manual score

HER2.membrane.score Manual score

ER_Int ER average intensity within the nucleus

HER2memInt HER2 average Intensity of the membrane.

HER2backAdj/ERbackAdj: Only in GoIFISH. Intensity after performing a baseline background subtraction.

ERNuclInt: ER nuclear intensity after performing a background detection per cell.

In the copy number data, we have the following descriptions:

CellProfiler Cell No. This column would be "ColumbusC" "GoIFISH" etc in the respective analyses

CellNo Manual cell number

CP_Under is the cell undersegmented (and to be excluded from later analysis)

cent17.CN.true or cent17.CN2 Manual: see ManIFISH

cent17.score Manual: see ManIFISH

cent17_CN_spot: measured number of cent 17 spots

cent17_Int: average intensity of the cent17 spots

cent17.Area: Total area occupied within a cell by cent17 spots

ERBB2.CN.true or ERBB2.CN2 Manual: see ManIFISH

ERBB2.score Manual: see ManIFISH
ERBB2_CN_spot : number of ERBB2 spots

ERBB2_Int : average ERBB2 intensity of spots

ERBB2_Area : Total area occupied within a cell by ERBB2 spots
3 Cell Detection: Precision and Recall. Capturing the average of an image

In this section, we will assess the precision and recall of each segmentation method. These results are attained from MATLAB. We make a comparison between 3 different methods: Columbus, Cell Profiler and GoIFISH (using both default settings and manually edited result) to a hand-segmented gold standard.

3.1 Nuclear Detection

```r
# Load existing Precision-Recall data. If this hasn't been loaded
load("data/Collated_PR_Data.RData")
# see what properties is available
colnames(PR_DAPI$ColumbusC)
## [1] "NCorrect" "UnderSeg" "OverSeg" "FalseNeg" "FalsePos"
## [6] "AreaOverlap" "AreaDiff" "SolidDiff" "PerimDiff" "APDiff"
## [11] "LargeArea" "SmallArea"
```

When we load the above file, we should see the precision-recall outputs using various softwares. The tables show a number of parameters including the number of correctly segmented cells, the number of over and under segmented cells, cells which have been completely missed in the segmentation or those which do not appear in the gold standard. In addition, there are deviation values for a number of morphological properties from the true standard.

First, we can make a plot of precision and recall for all the datasets:

```r
## (Example) calculate precision and recall:
testPrecision = with(PR_DAPI$ColumbusC, NCorrect/(NCorrect + OverSeg + FalsePos))
testRecall = with(PR_DAPI$ColumbusC, NCorrect/(NCorrect + UnderSeg + FalseNeg))
testFScore = 2 * testPrecision * testRecall/(testPrecision + testRecall)
## Run the Precision_Recall Function for all the samples
PR_DAPI = sapply(names(PR_DAPI), function(x) Calc.PRF(PR_DAPI[[x]], "DAPI"), USE.NAMES = T, simplify = F)
## Merge these values together and plot the result
Precision.Recall.Plot(PR_DAPI[c(-4)]) # Sample 4 is the optimal Columbus Samples
```
Here we see that CellProfiler outperforms the other methods. Columbus M on average performs better than Columbus C. CellProfiler and GoIFISH also perform similarly. We can construct independent Precision, Recall Line graphs which highlight the performance of each sample.

```r
# Plot the Precision, Recall and F Score per sample
PRF.LinePlot(PR_DAPI[c(1:3, 5:6)])
```
We see that method C has better precision, however, method M has better Recall. There is one sample, 7350, which had an improved output using method C compared to M. GoIFISH on average has good recall, and performs the best in samples 7364 and 7588.

The next thing we can test is the distributions of morphological parameters:

```r
Morph.Variation.Plot(PR_DAPI, ylim = c(-1.5, 1.5))
```
We see here that the perimeter differences are smaller in Columbus M, but the area different is slightly smaller in ColumbusC. GoIFISH on average has a larger segmentation with area and perimeters being higher, however, the Area-Perimeter ratio is closer to 0 compared to the other segmentation techniques.

3.2 HER2 membrane Detection

3.2.1 Performance

First we load the outputs of HER2 PR-Testing There are currently 4 items representing the 4 methods in columbus (A, B, C, F), CellProfiler and GoIFISH. The inputs of each matrix is in the same format as in DAPI.

As above, we calculate the precision and recall. Here, we do not consider non-
segmentation related false positives as the absence of distinct boundaries will impede our ability to segment all membranes in the image.

```r
# Precision, Recall calculations for HER2 protein outlines
PR_HER2 = sapply(names(PR_HER2), function(x) Calc.PRF(PR_HER2[[x]], "HER2"),
USE.NAMES = T, simplify = F)
```

We see that most samples have high precision, but lower recall. Looking at sample by sample basis:

```r
# Plot the precision/recall distributions
Precision.Recall.Plot(PR_HER2[-6])
```

![Segmentation Performance](image)

```r
# Plot the Precision, Recall and F Score per sample
PRF.LinePlot(PR_HER2[-6])
```
Check the Morphological Parameters:

```r
Morph.Variation.Plot(PR_HER2, ylim = c(-2, 2))
```
From this result, we can summarise which is the best segmentation to use for the Columbus samples as follows:

3.3 Spot Detection

3.3.1 Single Spots

```
# Precision, Recall calculations for HER2 protein outlines
PR_Cent17 = sapply(names(PR_Cent17), function(x) Calc.PRF(PR_Cent17[x], "DAPI"),
                   USE.NAMES = T, simplify = F)
```

We the results here are very image dependent - results from the same image often cluster together. (Eg, most of the diamonds perform quite poorly - this is probably a
<table>
<thead>
<tr>
<th>Sample</th>
<th>DAPI Method</th>
<th>Cytoplasmic Method</th>
<th>Spot</th>
</tr>
</thead>
<tbody>
<tr>
<td>6361</td>
<td>M</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>6370</td>
<td>M</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>7350</td>
<td>C</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>7360</td>
<td>M</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>7364</td>
<td>M</td>
<td>F</td>
<td>A</td>
</tr>
<tr>
<td>7417</td>
<td>M</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>7435</td>
<td>M</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>7588</td>
<td>M</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>7619</td>
<td>M</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>7641</td>
<td>M</td>
<td>C</td>
<td>A</td>
</tr>
</tbody>
</table>

reflection of the image quality rather than the segmentation accuracy).

```r
# Plot the precision/recall distributions
Precision.Recall.Plot(PR_Cent17[-4])
```
Plot the Precision, Recall and F Score per sample

PRF.LinePlot(PR_Cent17[-4])
Check the Morphological Parameters:

```r
Morph.Variation.Plot(PR_Cent17, ylim = c(-2, 2))
```
3.3.2 ERBB2

Individual spots in a cluster may be difficult to count by eye - especially on a maximum projected image. To counteract this problem, we looked at the precision-recall of individual spots (if present), and of the clusters themselves:

```r
# Precision, Recall calculations for HER2 protein outlines
PR_ERBB2 = sapply(names(PR_ERBB2), function(x) Calc.PRF(PR_ERBB2[[x]], "Spot"),
USE.NAMES = T, simplify = F)
```
Plot the precision/recall distributions

```r
x1 = grep("clust", names(PR_ERBB2))
Precision.Recall.Plot(PR_ERBB2[-x1])
```

Segmentation Performance

![Segmentation Performance Plot](image)

```r
Precision.Recall.Plot(PR_ERBB2[x1])
```
Plot the Precision, Recall and F Score per sample

PRF.LinePlot(PR_ERBB2[-x1])
PRF.LinePlot(PR_ERBB2[x1])
Check the Morphological Parameters:

```
Morph.Variation.Plot(PR_Cent17, ylim = c(-3, 1))
```
We see that most methods perform better as clusters, and thus use this as a measurement of performance.

3.4 Figure2

```r
# Create plots containing the best performing columbus method
par(mfrow = c(2, 2))
# DAPI
Precision.Recall.Plot(PR_DAPI[-c(2:3)])
# HER2
Precision.Recall.Plot(PR_HER2[c(1, 6:8)])
# cent17
```
Precision and Recall Plots

```r
Precision.Recall.Plot(PR_Cent17[c(1, 4:6)])
# ERBB2
Precision.Recall.Plot(PR_ERBB2[c(1, 7, 9, 11)])
```

Calculate Mean F Scores

```r
varnames=c("DAPI","HER2","cent17","ERBB2 clusters")
corrDAPI=sapply(c(1, 4:6), function(x) mean(PR_DAPI[[x]]$FScore))
corrHER2=sapply(c(1, 6:8), function(x) mean(PR_HER2[[x]]$FScore))
corrcent=sapply(c(1,4:6), function(x) mean(PR_Cent17[[x]]$FScore))
corrERBB2=sapply(c(1,7,9,11),function(x) mean(PR_ERBB2[[x]]$FScore) )
corr=cbind(corrDAPI, corrHER2, corrcent, corrERBB2)
colnames(corr)=varnames
rownames(corr)=c("CellProfiler", "Columbus", "GoFISH", "GoIFISH Adjusted")
polar.plot(corr, c(0, 90, 180, 270),labels = varnames,c(0, 90, 180, 270), main="Average FScore Distributions")
legend(0.4,0.4, c("CellProfiler", "Optimised Columbus", "GOIFISH Auto", "GOIFISH Adjusted"), col=c(1:4), lwd=2, cex=0.8)
```
Obtain the Mean FScores for each method:
corr
c## DAPI HER2 cent17 ERBB2 clusters
c## CellProfiler 0.7156 0.5432 0.5584 0.6288
c## Columbus 0.7078 0.8160 0.6180 0.6317
c## GoFISH 0.6832 0.8570 0.6948 0.8282
c## GoIFISH Adjusted 0.8446 0.8826 0.7102 0.8004

Next, we summarise the parameters for each sample, first we look at the area-perimeter ratio

Calculate Property Scores:
HER2_AP=sapply(c(1, 6:8), function(x) PR_HER2[[x]]$APDiff)
HER2_solid=sapply(c(1, 6:8),function(x) PR_HER2[[x]]$SolidDiff)
DAPI_AP=sapply(c(1, 4:6), function(x) PR_DAPI[[x]]$APDiff)
DAPI_solid=sapply(c(1, 4:6),function(x) PR_DAPI[[x]]$SolidDiff)
corrA = cbind(DAPI_AP, HER2_AP)
corrA = log2(corrA)
corrB = cbind(DAPI_solid, HER2_solid)
corrB = log2(corrB)

tcols = c("gray", "pink", "lightgreen", "cornflowerblue")

Plot the difference in AP-ratio
boxplot(corrA, col=rep(tcols, 2), xaxt="n",
 ylab="Difference in Area-Perimeter Ratio", outpch=NA)
tcols2 = rep(c("black", "red", "darkgreen", "darkblue"), 2)
for (i in 1:8) {
 stripchart(corrA[,i], method = "jitter", jitter=0.3, pch = 18, col = tcols2[i],
 vertical=T, add = TRUE, at=i)
}

abline(v=4.5)
abline(h=log2(1.25), lty=2)
abline(h=log2(0.75), lty=2)
Plot solidity differences

```r
boxplot(corrB, col=rep(tcols, 2), xaxt="n", ylab="Differences in Solidity")
for (i in 1:8){
  stripchart(corrB[,i], method = "jitter", jitter=0.3, pch = 18, col = tcols2[i], vertical=TRUE,
            add = TRUE, at=i)}
abline(v=4.5)
abline(h=log2(1.1), lty=2)
abline(h=log2(0.9), lty=2)
```
4 Biological comparison: Positivity and Intensity

Here, we check whether the membrane intensity is correlated with completeness or positivity.

Here is an example dataset:

```r
load("data/Compiled_CellData.RData")
head(CP_Protein$"7588")
## CellProfiler CellNo CP_Under DAPI_Area DAPI_Int Cyto_Area HER2cytoInt
## 1 6 2 0 6081 167.10 37445 609.0
## 2 14 3 0 6326 164.04 17313 216.0
## 3 12 4 0 5850 145.85 21233 317.9
## 4 10 7 0 4832 132.64 20605 272.5
## 5 17 8 0 3311 80.33 25840 429.0
## 6 26 10 0 4329 108.00 20754 380.7
## ER.score HER2.prot.score HER2.membrane.score ER_Int HER2memInt HER2_SD
## 1 mod +ve complete 0.006588 0.05683 0.2315
## 2 mod +ve broken 0.005495 0.05736 0.2325
## 3 mod +ve complete 0.006753 0.06141 0.2401
## 4 mod +ve broken 0.006641 0.05698 0.2318
## 5 mod +ve broken 0.005912 0.06207 0.2413
## 6 mod +ve broken 0.006362 0.03941 0.1946
```

Here, we see there are three pathologist scores: one for ER status, HER2 status and HER2 membrane continuity. Additionally, there are parameters obtained from an automated platform (ie. Columbus): These include mean DAPI intensity, ER intensity, Cytoplasmic and Membrane intensities for each method used.

4.1 ER Intensity Comparisons

4.1.1 Searching for trend in individual samples

Here, we plot the intensities correlating to all pathologist labelled cells for all ten images. Ideally, we would like to see: 1. That intensity increases with positivity. 2. Cells of the same class will have similar intensities across all samples. Eg. All negative cells will be close to 0, and all positive cells close to 100.

```r
# Plot the outputs: ER
OutputCP=IntensityComparison(CP_Protein, "ER.score", "ER_Int", F, "CellProfiler")
```
OutputCol=IntensityComparison(Columbus_Protein, "ER.score", "ER_Int", F, "Columbus")

Output=IntensityComparison(GF_Protein, "ER.score", "ER_Int",F, "GOIFISH")
Output = \texttt{IntensityComparison}(GF_Protein, "ER.score", "ER_backAdj", F, "GOIFISH Background Adjusted")

OutputGF = \texttt{IntensityComparison}(GF_Protein, "ER.score", "ERNucInt", F, "GOIFISH Nuclear Specific Adjustment")
The first plot shows the distribution of intensities with respect to class. Here, we see the baseline intensities (of "negative cells") varies across the samples. The exception to this is the GoIFISH Nuclear Specific Adjustment which appears to have all negative cells centred around 0 (with the exception of 7360 - in this case, the background is higher than the cell intensity and we can regard its intensity to be 0).

4.1.2 Anova to test for direct comparability

To determine whether any of these samples are directly comparable, we implement an anova and Tukey Honest Significant Differences test. The direct output of this shown in the top right plot: All pairwise tests using the baseline intensities are performed. Those which are centred around "0" have no difference.

To look in greater detail of which samples can be directly compared, heatmaps of the -log10Pvalue and the differences in means. The diagonal of both plots show the
significance value (-log10(0.05)) and 0 difference respectively. Thus, in the pvalue plot, all samples which are darker than this shade of green will have a significant pvalue and hence, a difference in the baseline intensities. All samples which are light green can be directly compared.

In the difference plot, 0 difference is showed by a light blue background. We see that sample 7614 has a lower baseline intensity value (indicated by more red colours). Samples 6370, 7588 and 7619 have bluer colours, indicating these have a higher baseline intensity.

We can look at the Output of `IntensityComparison` to determine how many pairwise comparisons can be performed:

```r
# Find number of pairwise samples which can be performed:
Nsamp = length(which(OutputCP$TukeyHSD[, 4] > 0.05))
Nsamp[2] = length(which(OutputGF$TukeyHSD[, 4] > 0.05))
Nsamp[3] = length(which(OutputCol$TukeyHSD[, 4] > 0.05))
Nsamp[4] = length(which(OutputMGF$TukeyHSD[, 4] > 0.05))
Nsamp
## [1] 32 35 20 36

# Calculate Total number of samples:
nrow(OutputCP$TukeyHSD)
## [1] 45
nrow(OutputGF$TukeyHSD)
## [1] 45
nrow(OutputCol$TukeyHSD)
## [1] 45
nrow(OutputMGF$TukeyHSD)
## [1] 45
```

Here, we see that 40% of direct comparisons will be valid in the Columbus case, and almost 90% in CellProfiler and GoIFISH. Note that GoIFISH sample 7360 has a negative ER intensities due to background subtraction - in practice, this would be assigned 0.

We can also check whether the upper limit is directly comparable:
Nsamp = length(which(OutputCP$TukeyUpper[, 4] > 0.05))
Nsamp[2] = length(which(OutputGF$TukeyUpper[, 4] > 0.05))
Nsamp[3] = length(which(OutputCol$TukeyUpper[, 4] > 0.05))
Nsamp[4] = length(which(OutputMGF$TukeyUpper[, 4] > 0.05))
Nsamp
[1] 39 27 26 29

number of comparisons
nrow(OutputCP$TukeyUpper)
[1] 45

nrow(OutputGF$TukeyUpper)
[1] 45

nrow(OutputCol$TukeyUpper)
[1] 45

nrow(OutputMGF$TukeyUpper)
[1] 45

One of the other outputs from MegaBoxPlot is the Jonckheere test for trend: In all applicable samples, we see if there is a trend of increasing intensity with increase in ER positive classification

par(mfrow = c(2, 2))
CorTestImage(rbind(OutputCP$Jonchkeere[, 2], OutputCP$Jonchkeere[, 1]/1000))
title(main = "CellProfiler")
CorTestImage(rbind(OutputCol$Jonchkeere[, 2], OutputCol$Jonchkeere[, 1]/1000))
title(main = "Columbus")
CorTestImage(rbind(OutputGF$Jonchkeere[, 2], OutputGF$Jonchkeere[, 1]/1000))
title(main = "GoIFISH")
Here, we see 6 samples are tested for Jonckheere’s trend. In red is the \(-\log_{10}\text{pValue}\), with the threshold of 0.05 shown as a dotted line. The test statistic (divided by 1000 to allow a similar scale) is shown in blue. Here, we see evidence of an increasing trend between measured intensity and pathologist categorisation. Note that there is evidence for ‘increasing trend’ in all samples except for the CellProfiler 7350 sample, and the Columbus 7364 sample.

4.1.3 Combining All Samples

We can try to group these samples together, and see if we see a difference between all the classes:

What if we combined all the samples and see where they lie in relation to one another?
par(mfrow=c(3, 2))
CP_ER=unlist(lapply(1:10, function(x) as.character(CP_Protein[[x]]$ER.score)))
CP_ER=cbind(CP_ER, unlist(lapply(1:10, function(x) CP_Protein[[x]]$ER_Int)))
Columbus_ER=unlist(lapply(1:10, function(x) as.character(Columbus_Protein[[x]]$ER.score)))
Columbus_ER=cbind(Columbus_ER, unlist(lapply(1:10, function(x) Columbus_Protein[[x]]$ER_Int)))
GF_ER=unlist(lapply(1:10, function(x) as.character(GF_Protein[[x]]$ER.score)))
GF_ER=cbind(GF_ER, as.numeric(unlist(lapply(1:10, function(x) GF_Protein[[x]]$ER_Int)))))
GF_ER=cbind(GF_ER, as.numeric(unlist(lapply(1:10, function(x) GF_Protein[[x]]$ER_backAdj))))
GF_ER=cbind(GF_ER, as.numeric(unlist(lapply(1:10, function(x) GF_Protein[[x]]$ERNucInt))))
MGF=unlist(lapply(1:10, function(x) as.character(ManGF_Protein[[x]]$ER.score)))
MGF=cbind(MGF, as.numeric(unlist(lapply(1:10, function(x) ManGF_Protein[[x]]$ERNucInt))))

Plot the Boxplots of intensities
Run function for specialised boxplots
BoxPlotCompare(CP_ER[,2],CP_ER[,1], "Cellprofiler")
BoxPlotCompare(Columbus_ER[,2],Columbus_ER[,1], "Columbus")
BoxPlotCompare(GF_ER[,2],GF_ER[,1], "GOIFISH")
BoxPlotCompare(GF_ER[,3],GF_ER[,1], "GOIFISH background Adjusted")
BoxPlotCompare(GF_ER[,4],GF_ER[,1], "GOIFISH nuclear Adjusted")
BoxPlotCompare(MGF[,2],MGF[,1], "Manual GOIFISH nuclear Adjusted")
The nuclear adjusted GoIFISH samples show a nice difference between negative, weak, moderate and positive. We can check for all samples whether there is some type of difference between the classes and how strong it is, by running a series of t-tests:

```r
par(mfrow = c(3, 2))
Matrix.Ttest(CP_ER)
title(main = "CellProfiler")
Matrix.Ttest(Columbus_ER)
title(main = "Columbus")
Matrix.Ttest(GF_ER)
title(main = "GF_raw")
Matrix.Ttest(GF_ER[, c(1, 3)])
title(main = "GF_adj")
```
The -log10pvalues are indicated on each comparison. A significant value is expected to be higher than 0.05 or 1.3 in -log10 scale. We see that the comparisons between positive, moderate and weak become significant after performing cell specific normalisation. However, when we simply compare ”negative samples” to ”the rest”, all samples showed significant results.

We test to see if there is an increasing trend amongst all samples by running a Jonckeree-Terpstra test for trend: we expect to see an increase in intensity as we progress from absent to positive.
JT test:

JT_HER2 = rep(NA, 6)

CellProfiler

JT_HER2[1] = jonckheere.test(as.numeric(CP_ER[,2]), factor(CP_ER[,1],
 levels=c("-ve", "weak","mod","+ve"), ordered=T),
 nperm=1000)$p.value

Columbus

JT_HER2[2] = jonckheere.test(as.numeric(Columbus_ER[,2]), factor(Columbus_ER[,1],
 levels=c("-ve", "weak","mod","+ve"), ordered=T),
 nperm=1000)$p.value

GoIFISH

JT_HER2[3] = jonckheere.test(as.numeric(GF_ER[,2]),
 factor(GF_ER[,1],
 levels=c("-ve", "weak","mod","+ve"), ordered=T),
 nperm=1000)$p.value

JT_HER2[4] = jonckheere.test(as.numeric(GF_ER[,3]),
 factor(GF_ER[,1],
 levels=c("-ve", "weak","mod","+ve"), ordered=T),
 nperm=1000)$p.value

JT_HER2[5] = jonckheere.test(as.numeric(GF_ER[,4]),
 factor(GF_ER[,1],
 levels=c("-ve", "weak","mod","+ve"), ordered=T),
 nperm=1000)$p.value

JT_HER2[6] = jonckheere.test(as.numeric(MGF[,2]),
 factor(MGF[,1],
 levels=c("-ve", "weak","mod","+ve"), ordered=T),
 nperm=1000)$p.value

names(JT_HER2) = c("CP", "Col", "GF_raw", "GF_Adj", "GF_nuc", "ManGF")

t(JT_HER2)

CP Col GF_raw GF_Adj GF_nuc ManGF
[1,] 0.002 0.002 0.002 0.002 0.002 0.002 0.002

We see that the increasing trend is significant in all of the above samples.

4.2 HER2 protein expression

We repeat the analysis for HER2 protein in a similar manner as described above. Here, we are interested in two types of analysis: Whether membrane or cytoplasmic intensities correlate with the given scores, and whether continuity in the membrane can be detected:

4.2.1 HER2 positivity and negativity: Is there a difference between these samples?

Next, we want to check whether the positivity or negativity of pathologist scoring is related to the intensity of the sample.
par(mfrow = c(3, 1))
memOutCP = IntensityComparison(CP_Protein, "HER2.prot.score", "HER2memInt", F, "CellProfiler membrane")

memOutCol = IntensityComparison(Columbus_Protein, "HER2.prot.score", "HER2memInt", F, "Columbus membrane")

memOutGF = IntensityComparison(GF_Protein, "HER2.prot.score", "HER2memInt", F, "GF Raw membrane")
memOutGFback = IntensityComparison(GF_Protein, "HER2.prot.score", "HER2backAdj", F, "GF Adjusted Membrane")

Man0 = IntensityComparison(ManGF_Protein, "HER2.prot.score", "HER2memInt", F, "GF Manual Raw membrane")
Man2 = IntensityComparison(ManGF_Protein, "HER2.prot.score", "HER2backAdj", F, "GF Manual Adjusted Membrane")

Find number of pairwise samples which can be performed:
Nsamp = length(which(memOutCP$TukeyHSD[, 4] > 0.05))
Nsamp[2] = length(which(memOutGFback$TukeyHSD[, 4] > 0.05))
Nsamp[3] = length(which(memOutCol$TukeyHSD[, 4] > 0.05))
Nsamp[4] = length(which(Man2$TukeyHSD[, 4] > 0.05))
Nsamp
[1] 25 17 10 14

Calculate Total number of samples:
nrow(memOutCP$TukeyHSD)
[1] 28
Check for the upper limit

```r
Nsamp = length(which(memOutCP$TukeyUpper[, 4] > 0.05))
Nsamp[2] = length(which(memOutGFback$TukeyUpper[, 4] > 0.05))
Nsamp[3] = length(which(memOutCol$TukeyUpper[, 4] > 0.05))
Nsamp[4] = length(which(Man2$TukeyUpper[, 4] > 0.05))
Nsamp
## [1] 32 18 15 19
```

We can apply a Jonckheere test for trend amongst all samples

```r
# Gather the JT HER2 intensity measurements
par(mfrow = c(2, 2))
CorTestImage(rbind(memOutCP$Jonchkeere[, 2], memOutCP$Jonchkeere[, 1]/1000))
title(main = "CP mem")
CorTestImage(rbind(memOutCol$Jonchkeere[, 2], memOutCol$Jonchkeere[, 1]/1000))
title(main = "Col mem")
CorTestImage(rbind(memOutGF$Jonchkeere[, 2], memOutGF$Jonchkeere[, 1]/1000))
title(main = "GF mem")
CorTestImage(rbind(memOutGFback$Jonchkeere[, 2], memOutGFback$Jonchkeere[, 1]/1000))
title(main = "GF adjust mem")
```
In the GoFISH samples, we see that about half the scorings are significant. Sample 7364 may have low scoring as most cells are negative.

4.2.2 Grouping all samples and comparing positivity vs negativity

```r
par(mfrow=c(3, 2))
CP_HER2=unlist(lapply(1:10, function(x) as.character(CP_Protein[[x]]$HER2.prot.score)))
CP_HER2=cbind(CP_HER2, unlist(lapply(1:10, function(x) as.character(CP_Protein[[x]]$HER2memInt))))

Columbus_HER2=unlist(lapply(1:10, function(x) as.character(Columbus_Protein[[x]]$HER2.prot.score)))
```
Columbus_HER2 = cbind(Columbus_HER2, unlist(lapply(1:10, function(x)
 as.character(Columbus_Protein[[x]]$$HER2memInt))))

GF_HER2 = unlist(lapply(1:10, function(x) as.character(GF_Protein[[x]]$$HER2.prot.score)))
GF_HER2 = cbind(GF_HER2, unlist(lapply(1:10, function(x)
 as.character(GF_Protein[[x]]$$HER2memInt))))
GF_HER2 = cbind(GF_HER2, unlist(lapply(1:10, function(x)
 as.character(GF_Protein[[x]]$$HER2backAdj))))

MGF_HER2 = unlist(lapply(1:10, function(x)
 as.character(ManGF_Protein[[x]]$$HER2.prot.score)))
MGF_HER2 = cbind(MGF_HER2, unlist(lapply(1:10, function(x)
 as.character(ManGF_Protein[[x]]$$HER2backAdj))))

Plot the Boxplots of intensities
BoxPlotCompare(CP_HER2[,2], CP_HER2[,1], "CellProfiler")
BoxPlotCompare(Columbus_HER2[,2], Columbus_HER2[,1], "Columbus")
BoxPlotCompare(GF_HER2[,2], GF_HER2[,1], "GOIFISH")
BoxPlotCompare(GF_HER2[,3], GF_HER2[,1], "GOIFISH background adj")
BoxPlotCompare(MGF_HER2[,2], MGF_HER2[,1], "GOIFISH manual background adj")

CellProfiler
 t.test(as.numeric(CP_HER2[,2])~factor(CP_HER2[,1]))

Welch Two Sample t-test
data: as.numeric(CP_HER2[, 2]) by factor(CP_HER2[, 1])
t = 4.503, df = 97.09, p-value = 1.863e-05
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.01843 0.04748
sample estimates:
mean in group -ve mean in group +ve
0.10647 0.07351

Columbus
 t.test(as.numeric(Columbus_HER2[, 2])~factor(Columbus_HER2[,1]))

Welch Two Sample t-test
data: as.numeric(Columbus_HER2[, 2]) by factor(Columbus_HER2[, 1])
t = -4.648, df = 175.9, p-value = 6.553e-06
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-332.7 -134.4
sample estimates:
mean in group -ve mean in group +ve
554.6 788.1

GoIFISH
t.test(as.numeric(GF_HER2[, 2])~factor(GF_HER2[,1]))

Welch Two Sample t-test
data: as.numeric(GF_HER2[, 2]) by factor(GF_HER2[, 1])
t = -6.497, df = 247.9, p-value = 4.465e-10
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-465.1 -248.7
sample estimates:
mean in group -ve mean in group +ve
680.9 1037.8

GoIFISH background adjusted
t.test(as.numeric(GF_HER2[, 3])~factor(GF_HER2[,1]))

Welch Two Sample t-test
data: as.numeric(GF_HER2[, 3]) by factor(GF_HER2[, 1])
t = -17.97, df = 319.9, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-666.8 -535.2
sample estimates:
mean in group -ve mean in group +ve
151.3 752.4

Manual GoIFISH cell adjusted
t.test(as.numeric(MGF_HER2[, 2])~factor(MGF_HER2[,1]))

Welch Two Sample t-test
data: as.numeric(MGF_HER2[, 2]) by factor(MGF_HER2[, 1])
t = -7.761, df = 232.6, p-value = 2.654e-13
It appears that the comparison between positive and negative samples is significant using all methods.
4.2.3 HER2 membrane completeness

A second variable to consider when scoring samples clinically is the continuity of the membrane in a HER2 sample.

```
OutputCP = IntensityComparison(CP_Protein, "HER2.membrane.score", "HER2memInt", F, "CellProfiler")
```

```
Sample
Intensity
Score absent broken complete
CellProfiler
0.1
0.2
0.3
0.4
```

```
OutputCol = IntensityComparison(Columbus_Protein, "HER2.membrane.score", "HER2memInt", F, "Columbus")
```

```
Sample
Intensity
Score absent broken complete
Columbus
500
1000
1500
```

```
OutputGF = IntensityComparison(GF_Protein, "HER2.membrane.score", "HER2memInt", F, "GOIFISH")
```

```
Sample
Intensity
Score absent broken complete
GOIFISH
Sample: 54
```
OutputGFAdj = `IntensityComparison(GF_Protein, "HER2.membrane.score", "HER2backAdj", F, "GOIFISH Background Adjusted")`

OutputMCF = `IntensityComparison(ManGF_Protein, "HER2.membrane.score", "HER2backAdj", F, "GOIFISH Manual Background Adjusted")`
It appears that the intensity is variable even after adjustment. We can check whether the intensity actually does increase in each sample.

```
par(mfrow = c(3, 2))
CorTestImage(rbind(OutputCP$Jonchkeere[, 2], OutputCP$Jonchkeere[, 1]/1000))
title(main = "CellProfiler")
CorTestImage(rbind(OutputCol$Jonchkeere[, 2], OutputCol$Jonchkeere[, 1]/1000))
title(main = "Columbus")
CorTestImage(rbind(OutputGF$Jonchkeere[, 2], OutputGF$Jonchkeere[, 1]/1000))
title(main = "GoIFISH")
CorTestImage(rbind(OutputGFAdj$Jonchkeere[, 2], OutputGFAdj$Jonchkeere[, 1]/1000))
title(main = "GoIFISH Adjusted")
CorTestImage(rbind(OutputMGF$Jonchkeere[, 2], OutputMGF$Jonchkeere[, 1]/1000))
title(main = "GoIFISH Adjusted")
```
It appears that GoIFISH performs better than CellProfiler and Columbus in displaying an increasing trend within a single image. However globally, there is not much similarity between samples.

```r
# Find number of pairwise samples which can be performed:
Nsamp = length(which(OutputCP$TukeyHSD[, 4] > 0.05))
Nsamp[2] = length(which(OutputGFAdj$TukeyHSD[, 4] > 0.05))
Nsamp[3] = length(which(OutputCol$TukeyHSD[, 4] > 0.05))
Nsamp[4] = length(which(OutputMGF$TukeyHSD[, 4] > 0.05))
Nsamp
## [1] 25 25 13 18
# Calculate Total number of samples:
```
It appears that direct comparisons can be made between two thirds of all pairwise comparisons

4.2.4 Combining all samples together

```r
par(mfrow=c(3,2))
CP_HER2=unlist(lapply(1:10, function(x) as.character(CP_Protein[[x]]$HER2.membrane.score))
CP_HER2=cbind(CP_HER2, unlist(lapply(1:10, function(x)

(CP_Protein[[x]]$HER2memInt))))

Columbus_HER2=unlist(lapply(1:10, function(x)
    as.character(Columbus_Protein[[x]]$HER2.membrane.score)))
Columbus_HER2=cbind(Columbus_HER2, unlist(lapply(1:10, function(x)

(Columbus_Protein[[x]]$HER2memInt))))

GF_HER2=unlist(lapply(1:10, function(x)
    as.character(GF_Protein[[x]]$HER2.membrane.score)))
GF_HER2=cbind(GF_HER2, (unlist(lapply(1:10, function(x)
    GF_Protein[[x]]$HER2memInt))))
GF_HER2=cbind(GF_HER2, (unlist(lapply(1:10, function(x)
    as.character(GF_Protein[[x]]$HER2backAdj))))

MGF_HER2=unlist(lapply(1:10, function(x) ManGF_Protein[[x]]$HER2.membrane.score))
MGF_HER2=cbind(MGF_HER2, as.numeric(unlist(lapply(1:10, function(x)
    ManGF_Protein[[x]]$HER2backAdj))))

# Plot the Boxplots of intensities
BoxPlotCompare(CP_HER2[,2], CP_HER2[,1], "CellProfiler")
BoxPlotCompare(Columbus_HER2[,2], Columbus_HER2[,1], "Columbus")
BoxPlotCompare(GF_HER2[,2], GF_HER2[,1], "GOIFISH")
BoxPlotCompare(GF_HER2[,3], GF_HER2[,1], "GOIFISH background adjusted")
```
We need to check whether these differences are significant: We can run a series of T-tests for each sample.

```r
par(mfrow = c(3, 2))
Matrix.Ttest(CP_HER2)
title(main = "CellProfiler")
Matrix.Ttest(Columbus_HER2)
title(main = "Columbus")
Matrix.Ttest(GF_HER2[, c(1, 2)])
title(main = "GoIFISH Raw")
Matrix.Ttest(GF_HER2[, c(1, 3)])
```
We see that after adjustment, the cells can be differentiated according to intensity in the GOIFISH and manually edited GOIFISH samples.

4.2.5 Looking at Higher Order Moments

We have so far investigated the mean, however, the membrane completeness could be described using higher order features including variance or skewness:
Look at Std Devs

A = IntensityComparison(CP_Protein, "HER2.membrane.score", "HER2_SD", F, "Cellprofiler HER2 SD")

![Cellprofiler HER2 SD](image)

Sample

<table>
<thead>
<tr>
<th>Intensity Score</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>absent</td>
<td></td>
</tr>
<tr>
<td>broken</td>
<td></td>
</tr>
<tr>
<td>complete</td>
<td></td>
</tr>
</tbody>
</table>

B = IntensityComparison(Columbus_Protein, "HER2.membrane.score", "HER2_SD", F, "Columbus HER2 SD")

![Columbus HER2 SD](image)

Sample

<table>
<thead>
<tr>
<th>Intensity Score</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>absent</td>
<td></td>
</tr>
<tr>
<td>broken</td>
<td></td>
</tr>
<tr>
<td>complete</td>
<td></td>
</tr>
</tbody>
</table>

C = IntensityComparison(GF_Protein, "HER2.membrane.score", "HER2_SD", F, "GOIFISH HER2 SD")

![GOIFISH HER2 SD](image)
D = IntensityComparison(ManGF_Protein, "HER2.membrane.score", "HER2_SD", F, "GOIFISH Manual HER2 SD")

Look at range
B2 = IntensityComparison(Columbus_Protein, "HER2.membrane.score", "HER2_range", F, "Columbus HER2 range")
C2=IntensityComparison(GF_Protein, "HER2.membrane.score", "HER2_range", F, "GOIFISH HER2 range")

D2=IntensityComparison(ManGF_Protein, "HER2.membrane.score", "HER2_range", F, "GOIFISH Manual HER2 range")
Look at skewness

C3=IntensityComparison(GF_Protein, "HER2.membrane.score", "HER2_skewness", F, "GOIFISH HER2 skewness")

D3=IntensityComparison(ManGF_Protein, "HER2.membrane.score", "HER2_skewness", F, "GOIFISH HER2 skewness")
GOIFISH Manual HER2 skewness

Sample
Intensity
Score absent broken complete

CellProfiler HER2 variance to mean Ratio

CP_Protein=VarNormalise2(CP_Protein, "HER2_SD", "HER2memInt", "HER2varMeanRat")
Columbus_Protein=VarNormalise2(Columbus_Protein,"HER2_SD", "HER2memInt", "HER2varMeanRat")
GF_Protein=VarNormalise2(GF_Protein,"HER2_SD", "HER2memInt", "HER2varMeanRat")
ManGF_Protein=VarNormalise2(ManGF_Protein,"HER2_SD", "HER2memInt", "HER2varMeanRat")

A4=IntensityComparison(CP_Protein, "HER2.membrane.score", "HER2varMeanRat", F, "CellProfiler HER2 variance to mean Ratio")

B4=IntensityComparison(Columbus_Protein, "HER2.membrane.score", "HER2varMeanRat", F,"Columbus HER2 variance to mean Ratio")

Can also look at variance to mean ratio in order to standardise samples

#Can also look at variance to mean ratio in order to standardise samples
C4=IntensityComparison(GF_Protein, "HER2.membrane.score", "HER2varMeanRat", F, "GOIFISH HER2 variance to mean ratio")

D4=IntensityComparison(ManGF_Protein, "HER2.membrane.score", "HER2varMeanRat", F,"GOIFISH Manual HER2 variance to mean Ratio")
Compare after combining all these values whether the distribution is significant or not:

```r
par(mfrow=c(3,2))

CP_HER2=cbind(CP_HER2, unlist(lapply(1:10, function(x) CP_Protein[[x]]$HER2_SD)))
CP_HER2=cbind(CP_HER2, unlist(lapply(1:10, function(x) CP_Protein[[x]]$HER2varMeanRat)))

Columbus_HER2=cbind(Columbus_HER2, unlist(lapply(1:10, function(x) Columbus_Protein[[x]]$HER2_SD)))
Columbus_HER2=cbind(Columbus_HER2, unlist(lapply(1:10, function(x) Columbus_Protein[[x]]$HER2varMeanRat)))

GF_HER2=cbind(GF_HER2, as.numeric(unlist(lapply(1:10, function(x) GF_Protein[[x]]$HER2_SD))))
GF_HER2=cbind(GF_HER2, as.numeric(unlist(lapply(1:10, function(x) GF_Protein[[x]]$HER2_range))))
GF_HER2=cbind(GF_HER2, as.numeric(unlist(lapply(1:10, function(x) GF_Protein[[x]]$HER2_skewness))))
GF_HER2=cbind(GF_HER2, as.numeric(unlist(lapply(1:10, function(x) GF_Protein[[x]]$HER2varMeanRat))))

MGF_HER2=cbind(MGF_HER2, as.numeric(unlist(lapply(1:10, function(x) ManGF_Protein[[x]]$HER2_SD))))
MGF_HER2=cbind(MGF_HER2, as.numeric(unlist(lapply(1:10, function(x) ManGF_Protein[[x]]$HER2_range))))
MGF_HER2=cbind(MGF_HER2, as.numeric(unlist(lapply(1:10, function(x) ManGF_Protein[[x]]$HER2_skewness))))
MGF_HER2=cbind(MGF_HER2, as.numeric(unlist(lapply(1:10, function(x) ManGF_Protein[[x]]$HER2varMeanRat))))
```
SD boxplots
BoxPlotCompare(GF_HER2[,4], GF_HER2[,1], "GOIFISH sd")
BoxPlotCompare(MGF_HER2[,3], MGF_HER2[,1], "Manual GOIFISH sd")
BoxPlotCompare(Columbus_HER2[,3], Columbus_HER2[,1], "Columbus sd")
BoxPlotCompare(CP_HER2[,3], CP_HER2[,1], "Cellprofiler sd")

Range boxplots
BoxPlotCompare(GF_HER2[,5], GF_HER2[,1], "GOIFISH range")
BoxPlotCompare(MGF_HER2[,4], MGF_HER2[,1], "Manual GOIFISH range")

skewness boxplots
BoxPlotCompare(GF_HER2[,6], GF_HER2[,1], "GOIFISH skewness")
Perform t-tests to check whether any of the above trends are significant:

```r
par(mfrow = c(3, 2))
Matrix.Ttest(GF_HER2[, c(1, 4)])
title(main = "GoIFISH variance")
Matrix.Ttest(MGF_HER2[, c(1, 3)])
```
```r
title(main = "Man GoIFISH variance")
Matrix.Ttest(GF_HER2[, c(1, 5)])
title(main = "GoIFISH range")
Matrix.Ttest(MGF_HER2[, c(1, 4)])
title(main = "Man GoIFISH range")
Matrix.Ttest(GF_HER2[, c(1, 6)])
title(main = "GoIFISH skewness")
Matrix.Ttest(MGF_HER2[, c(1, 5)])
title(main = "Man GoIFISH skewness")
```
Matrix.Ttest(GF_HER2[, c(1, 7)])
title(main = "GoIFISH std/mean")
Matrix.Ttest(MGF_HER2[, c(1, 6)])
title(main = "Man GoIFISH std/mean")
Matrix.Ttest(Columbus_HER2[, c(1, 3)])
title(main = "Columbus sd")
Matrix.Ttest(Columbus_HER2[, c(1, 4)])
title(main = "Columbus sd/mean ratio")
Matrix.Ttest(CP_HER2[, c(1, 3)])
title(main = "CP sd")
Matrix.Ttest(CP_HER2[, c(1, 4)])
title(main = "CP sd/mean ratio")

absent broken complete
absent complete
-0.00 2.67 6.94
2.67 -0.00 2.67
6.94 2.67 -0.00
GoIFISH std/mean

absent broken complete
absent complete
-0.00 1.42 4.02
1.42 -0.00 0.81
4.02 0.81 -0.00
Columbus sd

absent broken complete
absent complete
-0.00 1.42 4.02
1.42 -0.00 0.81
4.02 0.81 -0.00
Columbus sd/mean ratio

absent broken complete
absent complete
-0.00 0.81 0.10
0.81 -0.00 0.10
0.10 0.10 -0.00
CP sd/mean ratio
Note that the p values may be highly dependent on the sample sizes used. We can make a plot to see what their distributions are, and whether we should have neglected any specific analyses.

```r
HER2pos = sapply(1:10, function(x) table(na.omit(CP_Protein[[x]][, "HER2.prot.score"])))
HER2mem = sapply(1:10, function(x) summary(na.omit(CP_Protein[[x]][, "HER2.membrane.score"]))

par(mfrow = c(1, 2))
# do the barplots
barplot(HER2pos, names = names(CP_Protein), col = c(1, 2), las = 2)
legend("topright", levels(CP_Protein[[1]][, "HER2.prot.score"]), col = c(1:2), lwd = 2)
barplot(HER2mem, names = names(CP_Protein), col = c(1:4), las = 3)
legend("topright", levels(CP_Protein[[1]][, "HER2.membrane.score"]), col = c(1:4), lwd = 2)
```

Samples 7364 and 7419 may not have been useful to the above analysis due to low numbers of positive cells.
5 Accuracy in Spot Detection: Measuring intra-tumour heterogeneity

Here, we wish to investigate how closely manual detection or counting of spots correlate with automated detection of spots. We look at comparing at the cell level, detection rates for copy number, spot areas and intensities. For each cell, spot area, spot number and average intensity (using Channel3 or 5 respectively) were determined.

If we load the dataset, we notice that there is a list of 10 dataframes containing the merged CN data from manual and from automated analysis. Looking at the column names, we see that the main outputs from the manual counting are copynumber and a class status (0 is the weakest and 3 is the strongest. For sample 6370, we see 33 cells have high HER2 spot expression, indicating higher copy number in these samples). From Columbus segmentation, there are 6 variables: copy number, spot area and spot intensity for both HER2 and for cent17. In all analyses, correlation testing will be performed only in cells with good segmentation results to ensure that nuclear segmentation does not confound the results.

We can now do some analysis on copy number in the manual and the columbus analyses:

5.1 Correlating copy number between raw and counted values

Here, we determine whether the number of spots using each method correlate: Note that some samples are reported to be ‘amplified’ and a distinct number of copy numbers cannot be attained manually in these samples. We set these values arbitrarily at 21. First, we look at individual cent17 samples

```r
## Is there a direct correlation between manual and counts
par(mfrow = c(5, 4))
# Plot CP cent 17
for (i in 1:10) {
  smoothScatter(CP_CN[[i]]$cent17_CN_spot, CP_CN[[i]]$cent17_CN2, xlab = "CP",
               ylab = "Manual", main = sprintf("cent17_%s", names(CP_CN)[i]),
               abline(0, 1)
}
## KernSmooth 2.23 loaded
## Copyright M. P. Wand 1997-2009
# Columbus cent 17
for (i in 1:10) {
  smoothScatter(Columbus_CN[[i]]$cent17_CN_spot, Columbus_CN[[i]]$cent17_CN2,
               xlab = "ColM", ylab = "Manual", main = sprintf("cent17_%s", names(CP_CN)[i]),
               abline(0, 1)
}
```
Goifish cent 17

```r
for (i in 1:10) {
    smoothScatter(GF_CN[[i]]$cent17_CN_spot, GF_CN[[i]]$cent17.CN2, xlab = "GF",
                 ylab = "Manual", main = sprintf("cent17_%s", names(CP_CN)[i])
    abline(0, 1)
}
```

Plot Goifish manually edited cent 17

```r
for (i in 1:10) {
    smoothScatter(ManGF_CN[[i]]$cent17_CN_spot, ManGF_CN[[i]]$cent17.CN2, xlab = "ManGF",
                 ylab = "Manual", main = sprintf("cent17_%s", names(CP_CN)[i])
    abline(0, 1)
}
```
We can do the same with HER2 spots:

```r
par(mfrow = c(5, 4))
# Cell Profiler
for (i in 1:10) {
  smoothScatter(CP_CN[[i]]$ERBB2_CN_spot, CP_CN[[i]]$ERBB2.CN2, xlab = "CP",
               ylab = "Manual", main = sprintf("HER2_%s", names(CP_CN)[i]))
  abline(0, 1)
}
# Columbus
for (i in 1:10) {
  smoothScatter(Columbus_CN[[i]]$ERBB2_CN_spot, Columbus_CN[[i]]$ERBB2.CN2,
               xlab = "Col", ylab = "Manual", main = sprintf("HER2_%s", names(CP_CN)[i]))
  abline(0, 1)
}
```
Goifish
for (i in 1:10) {
 smoothScatter(GF_CN[[i]]$ERBB2_CN_spot, GF_CN[[i]]$ERBB2.CN2, xlab = "GF",
 ylab = "Manual", main = sprintf("HER2_%s", names(CP_CN)[i]))
 abline(0, 1)
}

Manual Goifish
for (i in 1:10) {
 smoothScatter(ManGF_CN[[i]]$ERBB2_CN_spot, ManGF_CN[[i]]$ERBB2.CN2, xlab = "GF",
 ylab = "Manual", main = sprintf("HER2_%s", names(CP_CN)[i]))
 abline(0, 1)
}
Note that the darker area in this plot correspond to a larger number of overlapping points. The correlation appears to be variable depending on the sample used: For example, sample 7619 had an over-exposed Cent17 channel resulting in a high false positive rate and should be discarded from further analysis.

We can summarise the direct correlation coefficient for all samples, by stacking them together:

```r
## CellProfiler
CP_spot = unlist(lapply(c(1:8, 10), function(x) CP_CN[[x]]$cent17.CN2))
CP_spot = cbind(CP_spot, unlist(lapply(c(1:8, 10), function(x) CP_CN[[x]]$ERBB2.CN2)))
CP_spot = cbind(CP_spot, unlist(lapply(c(1:8, 10), function(x) CP_CN[[x]]$cent17_CN_spot)))
CP_spot = cbind(CP_spot, unlist(lapply(c(1:8, 10), function(x) CP_CN[[x]]$ERBB2_CN_spot)))
CP_spot[, 5:6] = sapply(5:6, function(x) replace(CP_spot[, x], 22, NA))
CP_spot_idx = which(unlist(lapply(c(1:8, 10), function(x) CP_CN[[x]][, 3])) > 0)

## Columbus
Col_spot = unlist(lapply(c(1:8, 10), function(x) Columbus_CN[[x]]$cent17.CN2))
Col_spot = cbind(Col_spot, unlist(lapply(c(1:8, 10), function(x) Columbus_CN[[x]]$ERBB2.CN2)))
Col_spot = cbind(Col_spot, unlist(lapply(c(1:8, 10), function(x) Columbus_CN[[x]]$cent17_CN_spot)))
Col_spot = cbind(Col_spot, unlist(lapply(c(1:8, 10), function(x) Columbus_CN[[x]]$ERBB2_CN_spot)))
Col_spot[, 5:6] = sapply(5:6, function(x) replace(Col_spot[, x], 22, NA))
Col_spot_idx = which(unlist(lapply(c(1:8, 10), function(x) Columbus_CN[[x]][, 3])) > 0)

## GoIFISH
GF_Spot = unlist(lapply(c(1:8, 10), function(x) GF_CN[[x]]$cent17.CN2))
GF_Spot = cbind(GF_Spot, unlist(lapply(c(1:8, 10), function(x) GF_CN[[x]]$ERBB2.CN2)))
GF_Spot = cbind(GF_Spot, unlist(lapply(c(1:8, 10), function(x) GF_CN[[x]]$cent17_CN_spot)))
GF_Spot = cbind(GF_Spot, unlist(lapply(c(1:8, 10), function(x) GF_CN[[x]]$ERBB2_CN_spot)))
GF_Spot[, 5:6] = sapply(5:6, function(x) replace(GF_Spot[, x], 22, NA))
GF_spot_idx = which(unlist(lapply(c(1:8, 10), function(x) GF_CN[[x]][, 3])) > 0)

## Manual GoIFISH
MGF_Spot = unlist(lapply(c(1:8, 10), function(x) ManGF_CN[[x]]$cent17.CN2))
MGF_Spot = cbind(MGF_Spot, unlist(lapply(c(1:8, 10), function(x) ManGF_CN[[x]]$ERBB2.CN2)))
MGF_Spot = cbind(MGF_Spot, unlist(lapply(c(1:8, 10), function(x) ManGF_CN[[x]]$cent17_CN_spot)))
MGF_Spot = cbind(MGF_Spot, unlist(lapply(c(1:8, 10), function(x) ManGF_CN[[x]]$ERBB2_CN_spot)))
MGF_Spot = cbind(MGF_Spot, unlist(lapply(c(1:8, 10), function(x) ManGF_CN[[x]]$cent17.CN2)))
MGF_Spot[, 5:6] = sapply(5:6, function(x) replace(MGF_Spot[, x], 22, NA))
MGF_spot_idx = which(unlist(lapply(c(1:8, 10), function(x) ManGF_CN[[x]][, 3])) > 0)

## Start making plots here
par(mfrow = c(3, 3))
SmoothScatterCompare(CP_spot[-CP_spot_idx, 3], CP_spot[-CP_spot_idx, 1], "cent17", "CellProfiler")
SmoothScatterCompare(CP_spot[-CP_spot_idx, 4], CP_spot[-CP_spot_idx, 2], "her2", "CellProfiler")
SmoothScatterCompare(Col_spot[-Col_spot_idx, 3], Col_spot[-Col_spot_idx, 1], "cent17", "ColM")
SmoothScatterCompare(Col_spot[-Col_spot_idx, 4], Col_spot[-Col_spot_idx, 2], "her2", "ColM")
SmoothScatterCompare(GF_Spot[-GF_spot_idx, 3], GF_Spot[-GF_spot_idx, 1], "cent17", "GF")
SmoothScatterCompare(GF_Spot[-GF_spot_idx, 4], GF_Spot[-GF_spot_idx, 2], "her2", "GF")
SmoothScatterCompare(MGF_Spot[-GF_spot_idx, 3], MGF_Spot[-GF_spot_idx, 1], "cent17", "MGF")
SmoothScatterCompare(MGF_Spot[-GF_spot_idx, 4], MGF_Spot[-GF_spot_idx, 2], "her2", "MGF")
```r
Perform correlation testing for CellProfiler and COlumbus first
Cent17CNCorr <- sapply(1:10, function(x) cor.test(
 as.numeric(CP_CN[[x]][, "cent17_CN_spot"],
 as.numeric(CP_CN[[x]][, "cent17.CN.true"],
 use="complete"))[3:4])
ERBB2CNCorr <- sapply(1:10, function(x) cor.test(
 as.numeric(CP_CN[[x]][, "ERBB2_CN_spot"],
 as.numeric(CP_CN[[x]][, "ERBB2.CN.true"],
 use="complete"))[3:4])
Col_spot17 <- sapply(1:10, function(x) cor.test(
 as.numeric(Columbus_CN[[x]][, "cent17_CN_spot"],
 as.numeric(Columbus_CN[[x]][, "cent17.CN.true"],
 use="complete"))[3:4])
Col_spotERB <- sapply(1:10, function(x) cor.test(
 as.numeric(Columbus_CN[[x]][, "ERBB2_CN_spot"],
```
```r
as.numeric(Columbus_CN[[x]], "ERBB2.CN.true"), use="complete"[3:4])
colnames(Cent17CNCorr)=names(CP_CN)
colnames(ERBB2CNCorr)=names(CP_CN)
Plot the output here
par(mfrow=c(2,2))
CorTestImage(Cent17CNCorr, main="CP Cent17")
CorTestImage(ERBB2CNCorr, main="CP ERBB2")
CorTestImage(Col_spot17, main="Col Cent17")
CorTestImage(Col_spotERB, main="Col ERBB2")

Perform the same plots for GOIFISH
GF_spot17=sapply(1:10, function(x) cor.test(as.numeric(GF_CN[[x]][, "cent17_CN_spot"], as.numeric(GF_CN[[x]][, "cent17_CN.true"]),
use="complete"[3:4])
GF_spotERB=sapply(1:10, function(x) cor.test(as.numeric(GF_CN[[x]][, "ERBB2_CN_spot"], as.numeric(GF_CN[[x]][, "ERBB2.CN.true"]),
use="complete"[3:4])
MGF_spot17=sapply(1:10, function(x) cor.test(as.numeric(ManGF_CN[[x]][, "cent17_CN_spot"], as.numeric(ManGF_CN[[x]][, "cent17_CN.true"]),
use="complete"[3:4])
```
The above plots shows the -log10 p value (Red line) and correlation coefficient (blue lines). The red dotted line indicates a significant p value.

In the manual GoIFISH samples, 7641 is possibly the only case which does not reach a level of significance in comparisons between copy number for both cent17 and HER2. This may be due to the small number of cells present, and the high HER2 amplification seen where distinct spots are not obvious.

The default GoIFISH shows the same, with sample 6361 centromeric detection insignificant, possibly due to low signal and poor segmentation. Columbus suffers in samples 6361, 7419 and 7641. CellProfiler cent17 detection suffers in half its samples, and poor correlation was seen in 4 HER2 samples.
5.2 Direct Comparison to area

Next, we want to see whether the copy number is comparable to a measurable output. We first look at area:

```r
CellProfiler
CP_spot[,3]= unlist(lapply(c(1:8, 10), function(x) CP_CN[[x]]$cent17_Area))
CP_spot[,4]=unlist(lapply(c(1:8, 10), function(x) CP_CN[[x]]$ERBB2_Area))
Columbus
Col_spot[,3]= unlist(lapply(c(1:8, 10), function(x) Columbus_CN[[x]]$cent17_Area))
Col_spot[,4]=unlist(lapply(c(1:8, 10), function(x) Columbus_CN[[x]]$ERBB2_Area))
GoIFISH
GF_Spot[,3]=unlist(lapply(c(1:8, 10), function(x) GF_CN[[x]]$cent17_Area))
GF_Spot[,4]=unlist(lapply(c(1:8, 10), function(x) GF_CN[[x]]$ERBB2_Area))
ManualGoIFISH
MGF_Spot[,3]=unlist(lapply(c(1:8, 10), function(x) ManGF_CN[[x]]$cent17_Area))
MGF_Spot[,4]=unlist(lapply(c(1:8, 10), function(x) ManGF_CN[[x]]$ERBB2_Area))
Start making plots here
par(mfrow=c(3,3))
SmoothScatterCompare(CP_spot[-CP_spot_idx,3], CP_spot[-CP_spot_idx,1],
 xlim=c(0, 800), "cent17", "CellProfiler")
SmoothScatterCompare(CP_spot[-CP_spot_idx,4], CPSpot[-CP_spot_idx,2],
 xlim=c(0, 800), "her2", "CellProfiler")
SmoothScatterCompare(Col_spot[-Col_spot_idx,3], Col_spot[-Col_spot_idx,1],
 xlim=c(0, 800), "cent17", "Columbus")
SmoothScatterCompare(Col_spot[-Col_spot_idx,4], Col_spot[-Col_spot_idx,2],
 xlim=c(0, 800), "her2", "Columbus")
SmoothScatterCompare(GF_Spot[-GF_spot_idx,3], GF_Spot[-GF_spot_idx,1],
 xlim=c(0, 800), "cent17", "GF")
SmoothScatterCompare(GF_Spot[-GF_spot_idx,4], GF_Spot[-GF_spot_idx,2],
 xlim=c(0, 800), "her2", "GF")
SmoothScatterCompare(MGF_Spot[-MGF_spot_idx,3], MGF_Spot[-MGF_spot_idx,1],
 xlim=c(0, 800), "cent17", "MGF")
SmoothScatterCompare(MGF_Spot[-MGF_spot_idx,4], MGF_Spot[-MGF_spot_idx,2],
 xlim=c(0, 800), "her2", "MGF")
```
In most samples (except Cellprofiler), we see a good correlation between the spot count and the area. This plateaus out at approximately 400 pixels or 20 spots.

We want to see how these spots are distributed sample wise:

```r
par(mfrow=c(1,2))
plot(NA, NA, xlim=c(0, 800), ylim=c(0, 22), ylab="Manual Count", xlab="Estimated Area", main="HER2 spots")
for (i in c(1:8, 10)){
 rmIdx=which(ManGF_CN[[i]][,3]>0)
 points(ManGF_CN[[i]]$ERBB2_Area[-rmIdx], jitter(as.numeric(as.character(ManGF_CN[[i]]$ERBB2.CN2[-rmIdx])), amount=0.1), col=i, pch=19)
}
plot(NA, NA, xlim=c(0, 400), ylim=c(0, 10), ylab="Manual Count", xlab="Estimated Area", main="cent17 spots")
```

87
for (i in c(1:8, 10)){
    rmIdx=which(ManGF_CN[[i]][,3]>0)
    points(ManGF_CN[[i]]$cent17_Area, jitter(as.numeric(as.character(ManGF_CN[[i]]$cent17.CN2)), amount=0.1), col=i, pch=19)
}

par(xpd=T)
legend(410, 10, c("6361", "6370", "7350", "7360", "7364", "7417", "7435", "7588", "7641"), col=c(1:8, 10), lwd=1)

Most of the points do appear to overlap between samples. One exception is possibly the cent17 blue and green sample (7350 and 7435)

We can set a regression on each of the cent17 and HER2 samples to estimated the size of a spot (in pixels)

# look at cent17 first. CellProfiler
x1 = which(CP_spot[, 1] == 22)
summary(lm(CP_spot[-c(CP_spot_idx, x1), 3] ~ CP_spot[-c(CP_spot_idx, x1), 1]))

##
## Call:
## lm(formula = CP_spot[-c(CP_spot_idx, x1), 3] ~ CP_spot[-c(CP_spot_idx, x1), 1])
##
## Residuals:  
##    Min     1Q Median     3Q    Max
## -94.2  -35.2  -18.9   15.8  323.3

88
## Coefficients:
##
## (Intercept)  47.95  7.27   6.59   4.9e-10 ***  
## CP_spot[-c(CP_spot_idx, x1), 1]  13.71  2.55   5.38   2.3e-07 ***
##
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 61.5 on 174 degrees of freedom
## (102 observations deleted due to missingness)
## Multiple R-squared:  0.143, Adjusted R-squared:  0.138
## F-statistic:  29 on 1 and 174 DF,  p-value: 2.34e-07
##
# Columbus
x1 = which(Col_spot[, 1] == 22)
summary(lm(Col_spot[-c(Col_spot_idx, x1), 3] ~ Col_spot[-c(Col_spot_idx, x1), 1]))

##
## Call:
## lm(formula = Col_spot[-c(Col_spot_idx, x1), 3] ~ Col_spot[-c(Col_spot_idx, x1), 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -89.41 -18.72 -5.06 12.02 145.94
##
## Coefficients:
##
## (Intercept)  23.55  3.36   7.02   2.2e-11 ***
## Col_spot[-c(Col_spot_idx, x1), 1]  18.17  1.16  15.71 < 2e-16 ***
##
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 34.7 on 245 degrees of freedom
## (30 observations deleted due to missingness)
## Multiple R-squared:  0.502, Adjusted R-squared:  0.5
## F-statistic:  247 on 1 and 245 DF,  p-value: <2e-16

# GoIFISH
x1 = which(GF_Spot[, 1] == 22)
summary(lm(GF_Spot[-c(GF_spot_idx, x1), 3] ~ GF_Spot[-c(GF_spot_idx, x1), 1]))

##
## Call:
## lm(formula = GF_Spot[-c(GF_spot_idx, x1), 3] ~ GF_Spot[-c(GF_spot_idx, x1), 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -89.41 -18.72 -5.06 12.02 145.94
##
## Coefficients:
##
## (Intercept)  23.55  3.36   7.02   2.2e-11 ***
## GF_Spot[-c(GF_spot_idx, x1), 1]  18.17  1.16  15.71 < 2e-16 ***
##
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 34.7 on 245 degrees of freedom
## (30 observations deleted due to missingness)
## Multiple R-squared:  0.502, Adjusted R-squared:  0.5
## F-statistic:  247 on 1 and 245 DF,  p-value: <2e-16
## Call:
`lm(formula = GF_Spot[-c(GF_spot_idx, x1), 3] ~ GF_Spot[-c(GF_spot_idx, x1), 1])`

## Residuals:

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>1Q</th>
<th>Median</th>
<th>3Q</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residuals</td>
<td>-126.97</td>
<td>-24.24</td>
<td>-5.54</td>
<td>19.96</td>
<td>212.68</td>
</tr>
</tbody>
</table>

## Coefficients:

|                           | Estimate | Std. Error | t value | Pr(>|t|) |
|---------------------------|----------|------------|---------|----------|
| (Intercept)               | 30.77    | 4.16       | 7.4     | 2.9e-12 *** |
| GF_Spot[-c(GF_spot_idx, x1), 1] | 19.39    | 1.52       | 12.8    | < 2e-16 *** |

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 41.4 on 221 degrees of freedom
(2 observations deleted due to missingness)
Multiple R-squared: 0.424, Adjusted R-squared: 0.422
F-statistic: 163 on 1 and 221 DF, p-value: <2e-16

# Manual GoIFISH

```r
x1 = which(MGF_Spot[, 1] == 22)
summary(lm(MGF_Spot[-c(MGF_spot_idx, x1), 3] ~ MGF_Spot[-c(MGF_spot_idx, x1), 1]))
```

## Call:
`lm(formula = MGF_Spot[-c(MGF_spot_idx, x1), 3] ~ MGF_Spot[-c(MGF_spot_idx, x1), 1])`

## Residuals:

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>1Q</th>
<th>Median</th>
<th>3Q</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residuals</td>
<td>-141.98</td>
<td>-24.86</td>
<td>-5.11</td>
<td>12.64</td>
<td>156.90</td>
</tr>
</tbody>
</table>

## Coefficients:

|                           | Estimate | Std. Error | t value | Pr(>|t|) |
|---------------------------|----------|------------|---------|----------|
| (Intercept)               | 27.13    | 3.42       | 7.92    | 6.1e-14 *** |
| MGF_Spot[-c(MGF_spot_idx, x1), 1] | 18.99    | 1.21       | 15.70   | < 2e-16 *** |

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 37.3 on 272 degrees of freedom
(21 observations deleted due to missingness)
Multiple R-squared: 0.475, Adjusted R-squared: 0.474
We see that the coefficient for Columbus, GoIFISH and the manually curated GoIFISH samples are similar, with one spot designated by an area of approximately 17-20 pixels. A CellProfiler spot is 13.7 pixels, a Columbus spot is 18.2, GoIFISH is 19.4, GoIFISH manually curated is 19.

We can perform the sample with the ERBB2 dataset, omitting amplified cells to ensure linearity of the prediction: both Columbus and the Manually Curated GoIFISH estimate a HER2 spot at approximately the same size (Columbus: 18.9, GOIFISH: 19.5). The automated GoIFISH results predict this value to be around 15 pixels. CellProfiler is 12.6 pixels, and GoIFISH is 11.54.

## F-statistic: 247 on 1 and 272 DF, p-value: <2e-16

```
CellProfiler
x1 = which(CP_spot[, 2] == 22)
summary(lm(CP_spot[-c(CP_spot_idx, x1), 4] ~ CP_spot[-c(CP_spot_idx, x1), 2]))
```

```
Call:
lm(formula = CP_spot[-c(CP_spot_idx, x1), 4] ~ CP_spot[-c(CP_spot_idx, x1), 2])
##
Residuals:
Min 1Q Median 3Q Max
-228.9 -40.1 -13.0 32.2 260.4
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 82.18 8.54 9.62 <2e-16 ***
CP_spot[-c(CP_spot_idx, x1), 2] 12.64 1.23 10.30 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 75 on 130 degrees of freedom
(61 observations deleted due to missingness)
Multiple R-squared: 0.449, Adjusted R-squared: 0.445
F-statistic: 106 on 1 and 130 DF, p-value: <2e-16
```

```
Columbus
x1 = which(Col_spot[, 2] == 22)
summary(lm(Col_spot[-c(Col_spot_idx, x1), 4] ~ Col_spot[-c(Col_spot_idx, x1), 2]))
```

```
Call:
lm(formula = Col_spot[-c(Col_spot_idx, x1), 4] ~ Col_spot[-c(Col_spot_idx, x1), 2])
##
Residuals:
Min 1Q Median 3Q Max
-228.9 -40.1 -13.0 32.2 260.4
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 82.18 8.54 9.62 <2e-16 ***
CP_spot[-c(Col_spot_idx, x1), 2] 12.64 1.23 10.30 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 75 on 130 degrees of freedom
(61 observations deleted due to missingness)
Multiple R-squared: 0.449, Adjusted R-squared: 0.445
F-statistic: 106 on 1 and 130 DF, p-value: <2e-16
```
```
lm(formula = Col_spot[-c(Col_spot_idx, x1), 4] ~ Col_spot[-c(Col_spot_idx, x1), 2])
##
Residuals:
Min 1Q Median 3Q Max
-129.5 -37.8 -18.7 25.6 402.9
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 51.9940 6.9212 7.512 3.6e-12 ***
Col_spot[-c(Col_spot_idx, x1), 2] 18.9148 0.9433 20.053 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 67.7 on 163 degrees of freedom
(24 observations deleted due to missingness)
Multiple R-squared: 0.712, Adjusted R-squared: 0.71
F-statistic: 402 on 1 and 163 DF, p-value: <2e-16

GoIFISH
x1 = which(GF_Spot[, 2] == 22)
summary(lm(GF_Spot[-c(GF_spot_idx, x1), 4] ~ GF_Spot[-c(GF_spot_idx, x1), 2])))
##
Call:
lm(formula = GF_Spot[-c(GF_spot_idx, x1), 4] ~ GF_Spot[-c(GF_spot_idx, x1), 2])
##
Residuals:
Min 1Q Median 3Q Max
-168.2 -39.2 -14.1 14.4 463.0
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 67.4202 8.3396 8.097 1.7e-13 ***
GF_Spot[-c(GF_spot_idx, x1), 2] 14.7882 1.1891 12.420 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 80 on 154 degrees of freedom
(1 observation deleted due to missingness)
Multiple R-squared: 0.5, Adjusted R-squared: 0.497
F-statistic: 154 on 1 and 154 DF, p-value: <2e-16
```
5.3 Combining Area and Intensity

The last thing we want to check is whether the correlation improve if we add intensity information to area.

We perform a similar correlation testing to that shown in the previous section.

```r
Calculate Area and Intensity
CP_CN = VarCombine(CP_CN, "cent17.Area", "cent17.Int", "cent17.ArInt")
CP_CN = VarCombine(CP_CN, "ERBB2.Area", "ERBB2.Int", "ERBB2.ArInt")
Columbus_CN = VarCombine(Columbus_CN, "cent17.Area", "cent17.Int", "cent17.ArInt")
Columbus_CN = VarCombine(Columbus_CN, "ERBB2.Area", "ERBB2.Int", "ERBB2.ArInt")
GF_CN = VarCombine(GF_CN, "cent17.Area", "cent17.backAdj", "cent17.ArInt")
GF_CN = VarCombine(GF_CN, "ERBB2.Area", "ERBB2.backAdj", "ERBB2.ArInt")
ManGF_CN = VarCombine(ManGF_CN, "cent17.Area", "cent17.backAdj", "cent17.ArInt")
ManGF_CN = VarCombine(ManGF_CN, "ERBB2.Area", "ERBB2.backAdj", "ERBB2.ArInt")
```
CP_spot[, 3] = unlist(lapply(c(1:8, 10), function(x) CP_CN[[x]]$cent17_ArInt))
CP_spot[, 4] = unlist(lapply(c(1:8, 10), function(x) CP_CN[[x]]$ERBB2_ArInt))

# Columbus
Col_spot[, 3] = unlist(lapply(c(1:8, 10), function(x) Columbus_CN[[x]]$cent17_ArInt))
Col_spot[, 4] = unlist(lapply(c(1:8, 10), function(x) Columbus_CN[[x]]$ERBB2_ArInt))

# GoIFISH
GF_Spot[, 3] = unlist(lapply(c(1:8, 10), function(x) GF_CN[[x]]$cent17_ArInt))
GF_Spot[, 4] = unlist(lapply(c(1:8, 10), function(x) GF_CN[[x]]$ERBB2_ArInt))

# ManualGoIFISH
MGF_Spot[, 3] = unlist(lapply(c(1:8, 10), function(x) ManGF_CN[[x]]$cent17_ArInt))
MGF_Spot[, 4] = unlist(lapply(c(1:8, 10), function(x) ManGF_CN[[x]]$ERBB2_ArInt))

# Start making plots here
par(mfrow = c(3, 3))
SmoothScatterCompare(CP_spot[-CP_spot_idx, 3], CP_spot[-CP_spot_idx, 1], "cent17", "CellProfiler")

# Warning: Binning grid too coarse for current (small) bandwidth: consider increasing 'gridsize'
SmoothScatterCompare(CP_spot[-CP_spot_idx, 4], CP_spot[-CP_spot_idx, 2], "her2", "CellProfiler")

SmoothScatterCompare(Col_spot[-Col_spot_idx, 3], Col_spot[-Col_spot_idx, 1], "cent17", "Columbus")
SmoothScatterCompare(Col_spot[-Col_spot_idx, 4], Col_spot[-Col_spot_idx, 2], "her2", "Columbus")

SmoothScatterCompare(GF_Spot[-GF_spot_idx, 3], GF_Spot[-GF_spot_idx, 1], "cent17", "GF")
SmoothScatterCompare(GF_Spot[-GF_spot_idx, 4], GF_Spot[-GF_spot_idx, 2], "her2", "GF")

SmoothScatterCompare(MGF_Spot[-MGF_spot_idx, 3], MGF_Spot[-MGF_spot_idx, 1], "cent17", "GF")
SmoothScatterCompare(MGF_Spot[-MGF_spot_idx, 4], MGF_Spot[-MGF_spot_idx, 2], "her2", "GF")
We see that in the cent17 samples, intensity information makes the correlation worse. However, HER2 detection may have a benefit in this added information.
6 Inferring Sample Diversity

Now that we have attained several measurements about a sample, we would like to know how many possible clones there may be. We can start off doing this in a simple manner by thresholding based on ER2 and HER2 intensity (from Figure 2): We can set an arbitrary threshold at 50 which includes most negative samples, and differentiates against high and moderate. Similarly, we can set this value at around 250 for HER2 background Adjusted Intensity.

6.1 ER and HER2

```r
Cut the samples into pos and neg for each case
ManGF_ERcut = sapply(1:10, function(x) cut(ManGF_Protein[[x]]$ERNucInt, breaks=c(-500, 50, 1000), labels=c("neg", "pos")))
ManGF_HER2cut = sapply(1:10, function(x) cut(ManGF_Protein[[x]]$HER2backAdj, breaks=c(-1000, 300, 5000), labels=c("neg", "pos")))

Create a series of bar plots or something to show the number of samples
Sum_ManGF = sapply(1:10, function(x) length(which(ManGF_HER2cut[[x]] == "neg" & ManGF_ERcut[[x]] == "neg")))
Sum_ManGF = cbind(Sum_ManGF, sapply(1:10, function(x) length(which(ManGF_HER2cut[[x]] == "pos" & ManGF_ERcut[[x]] == "neg"))))
Sum_ManGF = cbind(Sum_ManGF, sapply(1:10, function(x) length(which(ManGF_HER2cut[[x]] == "neg" & ManGF_ERcut[[x]] == "pos"))))
Sum_ManGF = cbind(Sum_ManGF, sapply(1:10, function(x) length(which(ManGF_HER2cut[[x]] == "pos" & ManGF_ERcut[[x]] == "pos"))))
t1 = rowSums(Sum_ManGF)
Sum_ManGF = Sum_ManGF/t1

par oma=c(1,1.2,1.3,4.1, xpd=F)
barplot(t(Sum_ManGF), col=c("lightpink", "skyblue", "magenta", "darkblue"),
 names=sprintf("%s (%g)",names(ManGF_Protein),t1), las=2)
par(xpd=T)
legend(11,1, c("Neg", "HER2pos", "ERpos", "DoublePos"), lwd=2,
 col=c("lightpink", "skyblue", "magenta", "darkblue"))
```

96
We see here that 4 samples are only HER2 positive. All other samples appear to have some positivity in ER. Only 6361 and 7641 appear to have ER positive cells which are not also HER2 positive.

```r
Test the remainder of the population which has yet to be tested
ManGF_ERcut = sapply(1:10, function(x) cut(ManGF_Prot_notscored[[x]]$ERNucInt, breaks=c(-500, 50, 1000), labels=c("neg", "pos")))
ManGF_HER2cut = sapply(1:10, function(x) cut(ManGF_Prot_notscored[[x]]$HER2backAdj, breaks=c(-1000, 300, 5000), labels=c("neg", "pos")))
Create a series of bar plots or something to show the number of samples
Sum_ManGF = sapply(1:10, function(x) length(which(ManGF_HER2cut[[x]] == "neg" & ManGF_ERcut[[x]] == "neg")))
Sum_ManGF = cbind(Sum_ManGF, sapply(1:10, function(x) length(which(ManGF_HER2cut[[x]] == "pos" & ManGF_ERcut[[x]] == "neg"))))
Sum_ManGF = cbind(Sum_ManGF, sapply(1:10, function(x) length(which(ManGF_HER2cut[[x]] == "neg" & ManGF_ERcut[[x]] == "pos"))))
Sum_ManGF = cbind(Sum_ManGF, sapply(1:10, function(x) length(which(ManGF_HER2cut[[x]] == "pos" & ManGF_ERcut[[x]] == "pos"))))
```

97
t1=rowSums(Sum_ManGF)
Sum_ManGF=Sum_ManGF/t1
par(oma=c(1,1.2,1.3,4.1), xpd=F)
barplot(t(Sum_ManGF), col=c("lightpink", "skyblue", "magenta", "darkblue"),
       names=sprintf("%s (%g)",names(ManGF_Prot_notscored),t1 ), las=2)
par(xpd=T)
legend(11,1, c("Neg", "HER2pos", "ERpos", "DoublePos"), lwd=2,
       col=c("lightpink", "skyblue", "magenta", "darkblue"))
6.2 HER2 copy number vs protein

We can also do a similar approach with HER2 protein and copy number:

```r
Cut the samples into pos and neg for each case
ManGF_HER2cut <- sapply(1:10, function(x) cut(ManGF_Protein[[x]]$HER2backAdj,
 breaks=c(-1000, 300, 5000), labels=c("neg", "pos"))
ManGF_spot <- sapply(1:10, function(x) cut(ManGF_CN[[x]]$ERBB2_Area,
 breaks=c(-500, 60, 1000), labels=c("neg", "pos"))
class(ManGF_CN[[2]]$ERBB2_Area)
```

# [1] "integer"
# Create a series of bar plots or something to show the number of samples

```r
Sum_ManGF = sapply(1:10, function(x) length(which(ManGF_HER2cut[[x]] == "neg" & ManGF_spot[[x]] == "neg")))
Sum_ManGF = cbind(Sum_ManGF, sapply(1:10, function(x) length(which(ManGF_HER2cut[[x]] == "pos" & ManGF_spot[[x]] == "neg"))))
Sum_ManGF = cbind(Sum_ManGF, sapply(1:10, function(x) length(which(ManGF_HER2cut[[x]] == "neg" & ManGF_spot[[x]] == "pos"))))
Sum_ManGF = cbind(Sum_ManGF, sapply(1:10, function(x) length(which(ManGF_HER2cut[[x]] == "pos" & ManGF_spot[[x]] == "pos"))))

t1 = rowSums(Sum_ManGF)
Sum_ManGF = Sum_ManGF / t1

par oma = c(1, 1.2, 1.3, 4.1, xpd = F)
barplot(t(Sum_ManGF), col = c("lightpink", "skyblue", "lightgreen", "darkgreen"),
 names = sprintf("%s (%g)", names(ManGF_Protein), t1), las = 2)
par(xpd = T)
legend(11, 1, c("Neg", "HER2pos", "ERpos", "DoublePos"), lwd = 2,
 col = c("lightpink", "skyblue", "lightgreen", "darkgreen"))
```
We can also see how copy number relates to spot number (now that we have shown a correlation between the two). We can show show samples which may have a linear relationship with the HER2 protein intensity, and two samples which seem randomly
distributed:

```r
pal <- c("Black","Red","Green", "Blue", "orange", "yellow", "DarkBlue", "Pink","Cyan", "Gray", "Violet", "magenta")
CN_adjusted <- sapply(1:10, function(x) ManGF_CN[[x]]$ERBB2_Area)
plot(NA, NA, xlab="ERBB2Area", ylab="HER2 intensity",
 xlim=c(0, 800), ylim=c(0, 2500), main="Increasing Trend")
t1 = rep(NA, 10)
for (i in c(6, 8)) {
 points(CN_adjusted[[i]], ManGF_Protein[[i]]$HER2backAdj, col=(i-1), pch=19)
 t1[i]=cor(CN_adjusted[[i]], ManGF_Protein[[i]]$HER2backAdj, use="complete")
}
legend(600, 2500, names(ManGF_CN)[c(6,8)], col=c(5,7), lwd=1)
```

![Increasing Trend](image-url)

```r
plot(NA, NA, xlab="ERBB2Area", ylab="HER2 intensity",
 xlim=c(0, 800), ylim=c(0, 2500), main="Random Distribution")
t1 = rep(NA, 10)
```
for (i in c(2, 4)){
  points(CN_adjusted[[i]], ManGF_Protein[[i]]$HER2backAdj, col=i, pch=19)
  t1[i]=cor(CN_adjusted[[i]], ManGF_Protein[[i]]$HER2backAdj, use="complete")
}

legend(600, 2500, names(ManGF_CN)[c(2,4)], col=c(2,4), lwd=1)

names(t1)=names(ManGF_CN)
t1

##  6361  6370  7350  7360  7364  7417  7435  7588  7619  7641
##    NA 0.2218 NA 0.2909 NA   NA   NA   NA   NA   NA

Plotting the ratio of ERBB2 to cent17 and plotting against the HER2 intensity shows some interesting trends: For a lot of samples, HER2 expression appears to be independent of the normalised copy number. One exception is sample yellow (7417) which has a somewhat linear behaviour. In contrast, sample 7360 appears to show no link to
7 Software Performance

7.1 Classification Performance

Here, we assess the prediction accuracy of the SVM used to predict cell labels. In short, 2 test images have been labelled by a pathologist. We load in this data, and select a training-set at random. This training-set will encompass at least 1 cell of each label, and will be used to predict the labels of the rest of the cells.

The number of cells in the training set will grow in number and we will assess the minimum number of cells required to achieve high classificant accuracy. In order to determine the confidence intervals, the training-set will be permuted 500 times for a given set size.

Note this may be a time-intensive process. We have cached the output as an .RData object, which can be reproduced using the following set.seed(15):

7.1.1 Differentiating between luminal and epithelial cells

```r
Sample Number 6361: myoepithelial vs luminal cells load data.
Dat6361 = read.table("data/CellClassification/6361.txt", header = T)
Dat6361.Morph = Dat6361[, 2:7]
yLabel = Dat6361$Labels
summary(factor(yLabel))
1 2
39 17
Perform Accuracy Testing on Morphological data only Example SVM
Lab1 = which(yLabel == 1)
Lab2 = which(yLabel == 2)
set.seed(15)
TestSamp = c(sample(Lab1, 1), sample(Lab2, 1))
TestLab = c(1, 2)
TestSet = Dat6361.Morph[TestSamp,]
model = svm(TestSet, TestLab, kernel = "linear", type = "C-classification")
output = predict(model, Dat6361.Morph)
Accuracy = table(yLabel, output)
```

Given the labels for this data, we expect a minimum of 0.6964 accuracy (assuming that all samples are labelled as the dominant cell type). Using 2 cells as training data an accuracy of 0.7143 is achieved.
We now repeat, permuting the training set multiple times and including more data in the training set:

\[ \text{Out1} = \text{TestClassifier} (\text{Dat6361.Morph}, \text{yLabel}, \text{500}) \]

```r
ggplot(Out1, aes(x=N, y=MeanVal)) + ylim(0.2, 1) +
 geom_errorbar(aes(ymin=CI.025, ymax=CI.975), width=.1) +
 geom_line() +
 geom_point() +
 theme_set(theme_bw(18)) +
 ggtitle("Accuracy of classifier with variable size of trainings set") +
 xlab("Training Set Size") +
 ylab("Accuracy")
```
As expected, the mean classifier accuracy increases with larger training size, however, this value is capped at approximately 70% which is similar to random selection. The upper confidence interval limit (approximately 0.7) stays constant throughout the analysis. Thus, as long as two cells with morphology characteristic of the groups of interest are selected, high classification accuracy can still be attained.

We can also test whether including intensity information from the other channels of interest can improve this classification:

```r
Dat6361.WInt=Dat6361[, -c(1, grep("Location", colnames(Dat6361)),31)]
Dat6361.WInt[is.na(Dat6361.WInt)]=0
Out2=TestClassifier(Dat6361.WInt, yLabel, 500)
ggplot(Out2, aes(x=N, y=MeanVal)) + ylim(0.2, 1)+
 geom_errorbar(aes(ymin=CI.025, ymax=CI.975), width=.1) +
```
Including the stain information from other channels, we improve the average classification accuracy to over 90% when 22 cells or more are selected. If the training set is well selected, a minimum of 6 cells can give an accuracy of 90%. Note that warnings appear as in the training set, some cells may have no detected centromeric or her2 spots. Thus, in this circumstance where the morphology of the cells are rather similar (epithelial vs luminal), intensity information can be incorporated into the classifier to improve the classification result.

### 7.1.2 Tumour vs Stromal Cells

```r
Sample Number 6361: myoepithelial vs luminal cells
load data.
Dat7347=read.table("data/CellClassification/7347_p2.txt", header=T)
Dat7347.Morph=Dat7347[,2:7]
yLabel=Dat7347$Label
```
summary(factor(yLabel))

##  1 2 3
## 49 9 30

# Perform Accuracy Testing on Morphological data only
# Can be performed on 2 and 3 class.
# 2 class: omit the lymphocytes
Lab2=which(yLabel==2)
yNew=factor(yLabel[-Lab2])
levels(yNew)=list("1"=1, "2"=3)
OutSt=TestClassifier(Dat7347.Morph[-Lab2,], yNew, 500)
theme_set(theme_bw(18))
ggplot(OutSt, aes(x=N, y=MeanVal)) + ylim(0.2, 1)+
  geom_errorbar(aes(ymin=CI.025, ymax=CI.975), width=.1) +
  geom_line() +
  geom_point()+
  ggtitle("Accuracy of classifier: 2 class")+
  xlab("Training Set Size") +
  ylab("Accuracy")
# 3 classes:
OutStL=TestClassifier(Dat7347.Morph, yLabel, 500)
theme_set(theme_bw(18))
ggplot(OutStL, aes(x=N, y=MeanVal)) + ylim(0.2, 1)+
  geom_errorbar(aes(ymin=CI.025, ymax=CI.975), width=.1) +
  geom_line() +
  geom_point() +
  ggtitle("Accuracy of classifier: 3 class") +
  xlab("Training Set Size") +
  ylab("Accuracy")

We can add extra stain information and see how the classifier performs:

Dat7347.WInt=Dat7347[,-c(1, grep("Location", colnames(Dat7347)),31)]
Dat7347.WInt[is.na(Dat7347.WInt)]=0
OutS2=TestClassifier(Dat7347.WInt[-Lab2,], yNew, 500)
OutStL2=TestClassifier(Dat7347.WInt, yLabel, 500)
# plot the Stromal-cancer classifier with added intensity information
theme_set(theme_bw(18))
ggplot(OutS2, aes(x=N, y=MeanVal)) + ylim(0.2, 1)+
  geom_errorbar(aes(ymin=CI.025, ymax=CI.975), width=.1) +

![Accuracy of classifier: 3 class](image-url)
Accuracy of classifier with variable size of trainings set

# plot the stromal-lymphocyte classifier with added intensity
theme_set(theme_bw(18))
ggplot(OutStL2, aes(x=N, y=MeanVal)) + ylim(0.2, 1) +
  geom_errorbar(aes(ymin=CI.025, ymax=CI.975), width=.1) +
  geom_line() +
  geom_point() +
  ggtitle("Accuracy of classifier with variable size of trainings set") +
  xlab("Training Set Size") +
  ylab("Accuracy")
7.2 Background Intensity Variation

In this section we compare the background intensity values attained from 4 observers. Two are trained observers ("T1", "T2"), and two are trained on the spot using the guidelines given in the manual ("O1", "O2").

First we load all background intensities from all 4 observers and see how well they correlate with our gold standard:

```r
Load the dataset:
BackFiles = ReadBackgroundIntensity("data/Background_Stainings/")

Correlation plot between samples and gold standard
O1 = stack(BackFiles[[1]])
GS = stack(BackFiles[[2]])
T1 = stack(BackFiles[[3]])
T2 = stack(BackFiles[[4]])

plot(O1[, 1], GS[, 1], xlab = "Observers", ylab = "Gold Standard", pch = rep(1:5, each = 10))
points(T1[, 1], GS[, 1], pch = rep(1:5, each = 10), col = "red")
points(T2[, 1], GS[, 1], pch = rep(1:5, each = 10), col = "blue")
legend("topleft", c("O1", "T1", "T2"), col = c("black", "red", "blue"), lwd = 2)
```
# calculate the correlation between samples: Observer 1
```r
cor(O1[, 1], GS[, 1])
```
```
[1] 0.8943
```

# Trained observer 1
```r
cor(T1[, 1], GS[, 1])
```
```
[1] 0.9158
```
We see that all observers have a correlation close to 0.9 with the gold standard. The second thing we would like to check is the consistency of the scoring across samples: For example, are all nuclear stains scored in the same way.
We see that for all observers, the scoring is consistent with the gold standard across most samples.

### 7.2.1 Heterogeneity in background regions

To determine how heterogeneous a background image is, 4 candidate regions were selected to determine the variability across the image. We compared the standard deviation normalised by the mean (ie. the coefficient of variation):

```r
BackVar = read.csv("data/Background_Stainings/GS_areas.csv", header = T) # create a table of means and SD
Stains = c("DAPI", "Mem", "X1FISH", "Nuclei", "X2FISH")
MeanTable = matrix(NA, nrow = 10, ncol = 5)
```
StdTable = matrix(NA, nrow = 10, ncol = 5)
for (i in 1:5) {
    MeanTable[, i] = rowMeans(BackVar[, grep(Stains[i], colnames(BackVar))])
    StdTable[, i] = sapply(1:10, function(x) sd(BackVar[x, grep(Stains[i], colnames(BackVar))])
}
CV = StdTable/MeanTable
rownames(CV) = BackVar$sample
colnames(CV) = c("DAPI", "HER2p", "cent17", "ER", "HER2g")
col.theme = custom.theme(region = brewer.pal(9, "BuPu"))
levelplot(CV[, 5:1], border = "black", border.lwd = 1, par.settings = col.theme,
    shrink = MeanTable * 2/max(MeanTable), colorkey = list(space = "bottom",
    tick.number = 5))
7.3 Benchmarking Differences in Manual Editing

To determine how much user variability is involved with differences in segmentation, 52 poorly segmented cells were fixed by two different observers. This fixing was performed predominantly using a combination of cell cutting and merging, however, the borders can also be painted.

We can plot how the morphology and the intensities of the given cells differ

```r
Load the data file:
InterObs=read.csv('data/inter-obs_seg.csv', header=T)
Plot the morphology aspect:
plot(InterObs$O2_DAParea, InterObs$O1_DAParea, pch=19,
 xlim=c(0, 18000), ylim=c(0, 18000),
 xlab="Scorer2", ylab="Scorer1",
 main="Morphological Difference in Scoring",
 col="blue")
points(InterObs$O2_HER2Area, InterObs$O1_HER2Area, col=InterObs$HER2.prot, pch=19)
abline(0,1)
```
We notice in terms of morphology, the DAPI cells tend to have similar area between the two observers. There are a handful of cells which do not follow this trend: observation
of these cells shows cells which may be undergoing mitosis and is thus classified as a single cell by one Scorer and as 2 cells by the second Scorer. Overall, the consistency is 0.86.

The HER2 cytoplasmic area has most points on the main diagonal, but have the outlines of a number of cells fluctuating. It appears that most of these cells are HER2 negative and thus the membrane region is subject to interpretation in these cases. The correlation is 0.75 for all samples, and 0.79 after removing HER2 positive cases.

We can next look at the intensity of the samples in terms of ER and HER2

```r
plot(InterObs$O2_HER2Int, InterObs$O1_HER2Int, pch = 19, xlim = c(0, 2250),
 ylim = c(0, 2250), xlab = "Scorer2", ylab = "Scorer1", main = "Intensity Difference in Scoring",
 col = InterObs$HER2.prot)
points(InterObs$O2_ERInt, InterObs$O1_ERInt, col = "blue", pch = 19)
abline(0, 1)
legend("bottomright", c("HER2-", "HER2+", "ER"), col = c("black", "red", "blue"),
 lwd = 2)
```

![Intensity Difference in Scoring](image)
We see that despite the differences in morphology, the measured intensities strongly correlate between the two scorers ($r \approx 0.99$ for both HER2 membrane intensity and ER nuclear intensity).
8 Session info: R-packages and their versions used for this analysis

```r
sessionInfo()
```

```r
R version 3.0.2 (2013-09-25)
Platform: x86_64-apple-darwin10.8.0 (64-bit)
##
locale:
##
attached base packages:
[1] stats graphics grDevices utils datasets methods base
##
other attached packages:
[1] latticeExtra_0.6-26 lattice_0.20-24 ggplot2_0.9.3.1
[4] e1071_1.6-3 cluster_1.14.4 scales_0.2.3
[7] plotrix_3.5-5 RColorBrewer_1.0-5 clinfun_1.0.5
[10] MASS_7.3-29 knitr_1.5
##
loaded via a namespace (and not attached):
[1] class_7.3-9 codetools_0.2-8 colorspace_1.2-4
[4] dichromat_2.0-0 digest_0.6.4 evaluate_0.5.1
[7] formatR_0.10 grid_3.0.2 gtable_0.1.2
[10] highr_0.3 KernSmooth_2.23-10 labeling_0.2
[13] munsell_0.4.2 mvnorm_0.9-9997 plyr_1.8
[16] proto_0.3-10 reshape2_1.2.2 stringr_0.6.2
[19] tools_3.0.2
```