Table 1. Description of the robotic device(s) used as a tool for rehabilitation of individuals with SCI.

<table>
<thead>
<tr>
<th>Robotic device (s)</th>
<th>Features</th>
<th>Additional information available in the reviewed articles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Treadmill</td>
<td>BWS</td>
</tr>
</tbody>
</table>
| ARGO (A) [9, 20]. | O | O | ● | ● | — | ● | ● Excessive energy expenditure due to the use of devices to assist gait such as crutches to help walk.
● Gait pattern is not physiologic.
● Allows hip flexion of a lower limb to the lower contralateral member through a reciprocal bond. |
| Brain-controlled robotic exoskeleton (EXO) (B) [11]. | O | O | ● | 12 | — | O | ● Can be associated with BWS, sensory feedback, and pressure sensors, wire sensors, gyroscopes and EEG.
● Designed to be anatomically coherent with the body of an individual, because hip-to-knee segments of the legs could be adjusted to accommodate a variety of different leg lengths. |
| EKSO (C) [22, 23, 26, 27]. | O | O | ● | 4 | — | ● | ● Passive spring-loaded ankle joints.
● Backpack that houses a computer.
● Battery supply.
● Wired controller.
● Provides support from the posterior pelvis to the upper back.
● A step will not be triggered unless crutches are firmly on the ground.
● Do not present severe orthostatic hypotension, significant cardiac or vascular disease and integumentary issues such as open wounds.
● No pregnancy.
● Do not present significantly decline of bone density as indicated by DXA or a history of pathological fractures.
● Patients which do not present bilateral upper-extremity strength, one functional upper extremity or one functional lower extremity.
● Patients with contractures greater than 10 in the hip or knee joint, leg length differences more than 2 cm or total hip replacements. |
<table>
<thead>
<tr>
<th>Device</th>
<th>O</th>
<th>O</th>
<th>•</th>
<th>—</th>
<th>—</th>
<th>•</th>
<th>Details</th>
</tr>
</thead>
</table>
| HAL (D) [12, 25, 26] | O | O | • | — | — | • | ✤ Excessive energy expenditure due to a need for gait assistance devices such as crutches to help walk.
 ✤ Present a frame and robotic actuators that attach to the patient's legs.
 ✤ Joint movement is supported by electric motors.
 ✤ Initiate by minimal bioelectrical signals detected via surface EMG electrodes measured in hip and knee extensor and flexor muscles.
 ✤ Can be associated to treadmill and BWS.
 ✤ Enables to help sitting, walking, and standing as well as sit-to-stand, stand-to-walk, walk-to-stand, and stand-to-sit transitions or sit with 100% powered robotic assistance.
 ✤ Developed based on the user's ability to affect its center of pressure via the use of the upper body in combination with a stability aid.
 ✤ Excessive energy expenditure due to a need for gait assistance devices such as crutches to help walk.
 ✤ Height range 155 – 191 cm.
 ✤ Maximum hip width 42.2 cm.
 ✤ Femur length range 35 – 47 cm.
 ✤ Spasticity score: Modified Ashworth score 3 or lower.
 ✤ It is necessary sufficient upper body strength to balance and supports the forearms crutches, front-wheeled walker or platform walker.
 ✤ For complete and incomplete spinal cord injured individuals T4 or below.
 ✤ A Bluetooth LE radio allows communication between the Indego and iPhone or iPod touch through the custom Indego iOS application.
 ✤ Patients can activate their core muscles and experience balance aspects.
 ✤ Video monitor up front.
 ✤ Allows lateral translation and transverse rotation of the pelvis.
 ✤ Gait pattern is physiologic.
 ✤ Compatible with pediatric orthoses.
 ✤ Video monitor up front.
 ✤ Used to measure isometric force (torque), the stiffness of the patient's joints while the legs are passively moved at 30, 60 and 90°/s, and PROM. |
| Indego (E) [28, 31] | O | O | • | — | 113 kg | • | ✤ Excessive energy expenditure due to a need for gait assistance devices such as crutches to help walk.
 ✤ Present a frame and robotic actuators that attach to the patient's legs.
 ✤ Joint movement is supported by electric motors.
 ✤ Initiate by minimal bioelectrical signals detected via surface EMG electrodes measured in hip and knee extensor and flexor muscles.
 ✤ Can be associated to treadmill and BWS.
 ✤ Enables to help sitting, walking, and standing as well as sit-to-stand, stand-to-walk, walk-to-stand, and stand-to-sit transitions or sit with 100% powered robotic assistance.
 ✤ Developed based on the user's ability to affect its center of pressure via the use of the upper body in combination with a stability aid.
 ✤ Excessive energy expenditure due to a need for gait assistance devices such as crutches to help walk.
 ✤ Height range 155 – 191 cm.
 ✤ Maximum hip width 42.2 cm.
 ✤ Femur length range 35 – 47 cm.
 ✤ Spasticity score: Modified Ashworth score 3 or lower.
 ✤ It is necessary sufficient upper body strength to balance and supports the forearms crutches, front-wheeled walker or platform walker.
 ✤ For complete and incomplete spinal cord injured individuals T4 or below.
 ✤ A Bluetooth LE radio allows communication between the Indego and iPhone or iPod touch through the custom Indego iOS application.
 ✤ Patients can activate their core muscles and experience balance aspects.
 ✤ Video monitor up front.
 ✤ Allows lateral translation and transverse rotation of the pelvis.
 ✤ Gait pattern is physiologic.
 ✤ Compatible with pediatric orthoses.
 ✤ Video monitor up front.
 ✤ Used to measure isometric force (torque), the stiffness of the patient's joints while the legs are passively moved at 30, 60 and 90°/s, and PROM. |
| Lokomat FreeD Module (F) [19]| • | • | • | 6 | 135 kg | O | ✤ Patients can activate their core muscles and experience balance aspects.
 ✤ Video monitor up front.
 ✤ Allows lateral translation and transverse rotation of the pelvis. |
| LokomatPRO (without FreeD module) (G) [7, 10, 13, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50] | • | • | • | 4 | 135 kg | O | ✤ Video monitor up front.
 ✤ Allows lateral translation and transverse rotation of the pelvis. |
<table>
<thead>
<tr>
<th>Model</th>
<th>Weight Limit</th>
<th>Height Limit</th>
<th>Gait Pattern Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOPES (H) [16, 17].</td>
<td>● ● ● 6 — O</td>
<td>❖ Passive foot lifters can be added to keep dorsiflexion ankle. ❖ Video monitor up front. ❖ Severe contractures. ❖ Bone instability. ❖ Open skin lesions in the area of the lower limbs and torso. ❖ Cardiac and circulatory contraindications ❖ Severe cognitive deficits. ❖ Hip, knee, ankle arthrodesis.</td>
<td></td>
</tr>
<tr>
<td>Mindwalker (I) [15, 18].</td>
<td>O O ● 6 100 kg ●</td>
<td>❖ Excessive energy expenditure due to a need for gait assistance devices such as crutches. ❖ Patient height between 1.53 - 1.88 m. ❖ Hip width up to 0.44 m. ❖ Requires high load on the upper limb joints. ❖ Can be associated to treadmill and BWS. ❖ Initiate by minimal bioelectrical signals detected via surface EMG electrodes measured in hip and knee extensor and flexor muscles.</td>
<td></td>
</tr>
<tr>
<td>ReWalk (J) [21, 23, 26].</td>
<td>O O ● — 100 kg ●</td>
<td>❖ Body height between 160 - 190 cm. ❖ Gait pattern is not physiological. ❖ Due to standing up/sitting down with the crutches, the device exerts pressure at the bend of the elbow and present risk of bruises. ❖ Requires walking aids (crutches or a walker) to ensure stability and safety of the user. ❖ The gait is a three-point pattern. ❖ Present a battery unit, computer contained in a backpack, wireless mode selector, sensors that measure upper-body tilt angle, joint angles, and ground contact. ❖ The exoskeleton is articulated to footplates distally and to a sacral band proximally. ❖ Additional modes include sit-to-stand, stand-to-sit, up and down stairs.</td>
<td></td>
</tr>
</tbody>
</table>
The user will partially depend on crutches, or a walker to support their weight and maintain balance, joint angles and foot contact forces, which are often recorded to monitor basic gait performance.

- Exoskeleton and walker are placed at a convenient location suitable for walking (e.g. bedroom).
- Other robotic parts can be added by the user in the wheelchair.
- Robot can be folded into a roller bag and transported to anywhere.
- It can be used on uneven surfaces.

(*) Yes; (O) Not; (—) Not informed.