3D V-cell Algorithm

- Let P be the set of input points in 3D space
- DELAUNAY3D(P) returns the 3D triangulation (as a set of tetrahedra) for a given set of points P, which represent the V-cell centers
- CIRCUMCENTER(t) returns the center of sphere which passes through all vertices of the given tetrahedron t
- GETFACES(p,t) returns the 3 triangles from tetrahedron t which share a point with p
- GETADJACENTTETRA(p,tri) returns the tetrahedra which shares a point with p and a face with triangle tri
- ADDTRIANGLE(p1,p2,p3) returns a triangle containing given points p1, p2, and p3

procedure CALCULATEVCELLS3D(P)
T ← DELAUNAY3D(P)

for all p_i ∈ P do
 for all t_j ∈ T do
 if t_j.contains(p_i) then
 p_i.tetras.add(t_j)
 end if
 end for
end for

for all p_i ∈ P do
 for all t_j ∈ p_i do
 t_j.center ← CIRCUMCENTER(t_j)
 t_j.faces ← GETFACES(p_i,t_j)
 for all triangle_k ∈ t_j.faces do
 triangle_k.tetra ← GETADJACENTTETRA(p_i,triangle_k)
 triangle_k.tetraCenter ← CIRCUMCENTER(triangle_k.tetra)
 end for
 vCellList(p_i).ADDTRIANGLE(t_j.center,triangle_0.tetraCenter,triangle_1.tetraCenter)
 vCellList(p_i).ADDTRIANGLE(t_j.center,triangle_0.tetraCenter,triangle_2.tetraCenter)
 vCellList(p_i).ADDTRIANGLE(t_j.center,triangle_1.tetraCenter,triangle_2.tetraCenter)
 end for
end for

return vCellList