2D V-cell Algorithm

- Let \(P \) be the set of input points in 2D space
- \(\text{DELAUNAY2D}(P) \) returns the triangulation for a given set of points \(P \), which represent the V-cell centers
- \(\text{CIRCUMCENTER}(t) \) returns the center of circle which passes through all vertices of the given triangle \(t \)
- \(\text{GETNEXTVERTEX}(v_1, v_2, t.id) \) takes two vertices, \(v_1 \) and \(v_2 \), and the id of the current triangle, \(t.id \), and returns the next triangle with forming points \(v_1 \) and \(v_2 \) and which also shares an edge with \(t.id \), without backtracking
- \(\text{COUNTERCLOCKWISE}(\text{pointsList}) \) takes a list of points and returns the points in sorted counterclockwise order
- \(\text{CREATEPOLYGON}(\text{pointsList}) \) takes a list of counterclockwise points and creates a polygon

procedure \(\text{CALCULATEVCELLS2D}(P) \)

\[
T \leftarrow \text{DELAUNAY2D}(P)
\]

for all \(p_i \in P \) do
 for all \(t_j \in T \) do
 if \(t_j \).contains\((p_i) \) then
 centerFormingPoint \(\leftarrow t_j\).pointOne
 secondFormingPoint \(\leftarrow t_j\).pointTwo
 currentTriangle \(\leftarrow t_j\)
 startTriangle \(\leftarrow t_j\)
 triangleList.add\((currentTriangle)\)
 circumcenterPointsList.add\((\text{CIRCUMCENTER}(currentTriangle))\)
 repeat
 \(t_k \leftarrow \text{GETNEXTVERTEX}(\text{centerFormingPoint}, \text{secondFormingPoint}, \text{currentVertex})\)
 currentVertex \(\leftarrow t_k\)
 secondFormingPoint \(\leftarrow t_k\).pointTwo
 circumcenterPointsList.add\((\text{CIRCUMCENTER}(currentTriangle))\)
 until currentTriangle.equals\((startTriangle)\)
 \(v\text{Cells}.add(p_i\).id\)
 \(v\text{Centers}.add(circumcenterPointsList)\)
 endif
 end for
end for

for all circumcenterPointsList \(\in v\text{Centers} \) do
 counterClockwisePointsList \(\leftarrow \text{COUNTERCLOCKWISE}(\text{circumcenterPointsList}_i)\)
 \(v\text{CellPolygonList}.add(\text{CREATEPOLYGON}(\text{counterClockwisePointsList}))\)
 \(v\text{CellCentersList}.add(v\text{Cells}.get(i))\)
end for

return \(v\text{CellPolygonList}, v\text{CellCentersList} \)