Table S4. Associations of ALT with POPs at baseline and at 12 months stratified by sex.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Male Baseline (n=36)</th>
<th>Male 12 months (n=30)</th>
<th>Female Baseline (n=79)</th>
<th>Female 12 months (n=61)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B (95% CI)</td>
<td>p-value</td>
<td>B (95% CI)</td>
<td>p-value</td>
<td></td>
</tr>
<tr>
<td>HCB</td>
<td>-0.42 (-0.82 , -0.02)</td>
<td>0.041</td>
<td>0.03 (-0.35 , 0.41)</td>
<td>0.863</td>
<td>0.14 (-0.38 , 0.11)</td>
</tr>
<tr>
<td>β-HCH</td>
<td>-0.49 (-0.78 , -0.19)</td>
<td>0.002</td>
<td>0.03 (-0.37 , 0.43)</td>
<td>0.885</td>
<td>-0.09 (-0.29 , 0.11)</td>
</tr>
<tr>
<td>Trans-nonachlor</td>
<td>-0.23 (-0.50 , 0.05)</td>
<td>0.098</td>
<td>0.08 (-0.25 , 0.41)</td>
<td>0.624</td>
<td>-0.07 (-0.26 , 0.12)</td>
</tr>
<tr>
<td>p,p'-DDE</td>
<td>-0.03 (-0.25 , 0.19)</td>
<td>0.784</td>
<td>0.28 (0.02 , 0.55)</td>
<td>0.038</td>
<td>-0.04 (-0.19 , 0.10)</td>
</tr>
<tr>
<td>PCB 118</td>
<td>-0.16 (-0.44 , 0.12)</td>
<td>0.240</td>
<td>0.18 (-0.15 , 0.51)</td>
<td>0.273</td>
<td>-0.05 (-0.25 , 0.16)</td>
</tr>
<tr>
<td>PCB 153</td>
<td>-0.29 (-0.66 , 0.08)</td>
<td>0.116</td>
<td>0.26 (-0.16 , 0.69)</td>
<td>0.216</td>
<td>-0.16 (-0.43 , 0.10)</td>
</tr>
<tr>
<td>PCB 138</td>
<td>-0.21 (-0.49 , 0.08)</td>
<td>0.146</td>
<td>0.22 (-0.19 , 0.63)</td>
<td>0.278</td>
<td>-0.14 (-0.36 , 0.09)</td>
</tr>
<tr>
<td>PCB 156</td>
<td>-0.26 (-0.64 , 0.13)</td>
<td>0.181</td>
<td>0.19 (-0.19 , 0.56)</td>
<td>0.316</td>
<td>-0.16 (-0.41 , 0.09)</td>
</tr>
<tr>
<td>PCB 180</td>
<td>-0.38 (-0.90 , 0.14)</td>
<td>0.150</td>
<td>0.30 (-0.14 , 0.74)</td>
<td>0.166</td>
<td>-0.26 (-0.59 , 0.06)</td>
</tr>
<tr>
<td>PCB 170</td>
<td>-0.41 (-0.93 , 0.12)</td>
<td>0.124</td>
<td>0.29 (-0.15 , 0.73)</td>
<td>0.187</td>
<td>-0.29 (-0.63 , 0.06)</td>
</tr>
<tr>
<td>BDE 47</td>
<td>0.07 (-0.20 , 0.35)</td>
<td>0.582</td>
<td>-0.09 (-0.47 , 0.30)</td>
<td>0.647</td>
<td>0.09 (-0.09 , 0.26)</td>
</tr>
<tr>
<td>BDE 153</td>
<td>0.17 (-0.09 , 0.43)</td>
<td>0.187</td>
<td>0.05 (-0.27 , 0.37)</td>
<td>0.745</td>
<td>0.10 (-0.05 , 0.25)</td>
</tr>
<tr>
<td>BDE 209</td>
<td>0.01 (-0.14 , 0.15)</td>
<td>0.933</td>
<td>-0.03 (-0.21 , 0.16)</td>
<td>0.746</td>
<td>-0.03 (-0.15 , 0.09)</td>
</tr>
<tr>
<td>Sum of 6 PCBs</td>
<td>-0.34 (-0.75 , 0.07)</td>
<td>0.102</td>
<td>0.27 (-0.17 , 0.70)</td>
<td>0.219</td>
<td>-0.19 (-0.47 , 0.09)</td>
</tr>
<tr>
<td>Sum of 4 BDEs</td>
<td>0.07 (-0.13 , 0.27)</td>
<td>0.457</td>
<td>-0.07 (-0.34 , 0.21)</td>
<td>0.626</td>
<td>0.00 (-0.15 , 0.15)</td>
</tr>
</tbody>
</table>

^a At baseline concentrations of POPs (ng/g lipids) and ALT were log-transformed for the linear regression analysis that was adjusted for age, BMI and fasting insulin.

^b At 12 months concentrations of POPs (ng/g lipids) and ALT were log-transformed for the linear regression analysis that was adjusted for age, weight change (kg) and fasting insulin.