Appendix 2: Pseudo-code for UDF.c

Initialization:
- loop over the input surfaces
 - loop over the input points
 - read the spline coefficients for the position of this input point as calculated in pyFormex

Space Interpolation (find the nearest points):
- loop over the moving computational surfaces
 - loop over the faces
 - loop over the nodes
 - calculate the distance with all the points (at time=\(t\)) of the corresponding input surface
 - identify the 5 nearest points of the corresponding input surface
 - store the IDs of these closest input points

Update of the Fluent Mesh:
- loop over the input surfaces
 - loop over the points
 - update the position of this point using the spline coefficients stored in Fluent
 - calculate the displacement with respect to the previous time step
- loop over the moving computational surfaces
 - loop over the faces
 - loop over the nodes
 - retrieve the 5 nearest input points
 - check the quality of the triangle formed by the nearest input points (select the 3 closest points which generate a not-skewed triangle)
 - project the node on this input triangle
 - calculate barycentric coordinates of projection
 - if (projection is outside the triangle) then force the projection of the Fluent point on the closest edge or point of the input triangle
 - update the position of the Fluent point as linear combination of the displacements of the 3 closest input points

Contact detection:
- set thresholds for contact detection
- loop over all the faces (f1) which can possibly be in contact
 - loop over the nodes (n1)
 - check distance of node (n1) from center of face (f1)
 - if distance \(<\) threshold
 - calculate node normal
 - check direction of face and node normal
 - if (normals almost parallel and with opposite sense)
 - if the projection of the node along its normal falls within the original face then set flag for contact on the face (f1), the node (n1) and on the faces (f2) to whom the node n1 also belongs

Fill the gap:
- loop over the moving computational surfaces of valve
 - loop over the faces
 - retrieve the flags for contact
 - loop over the cells neighboring the flagged faces
 - set contact-flag in this cell
 - loop over the cells sharing one face with this contact-flagged cell until a wall is found or a max number of iterations is reached
 - set contact-flag in this cell