TF PWM Alteration Probability Estimation Algorithm

To summarize, the alteration probability estimation algorithm consist of the following steps:

1. **Scan all k-mer sequences**

 For \(i = 1 \) to \(I \), where \(i \) is the index of transcription factor set PWM

 Obtain \(k \), where \(k \) is the width of pwm(\(i \))

 For \(p_k = 1 \) to \(P_k \), where \(p_k \) is the index of k-mer sequence set SEQ

 Match pwm(\(i \)) against seq(\(p_k \))

 If p-value > 0.001

 add seq(\(p_k \)) to MatchSEQ set

2. **Counting every alteration event**

 For \(i = 1 \) to \(I \), where \(i \) is the index of transcription factor set PWM

 For \(j = 1 \) to \(J \), where \(j \) is the index of element in MatchSEQ

 For \(q_{trinuc} = 1 \) to \(Q_{trinuc} \), where \(q_{trinuc} \) is the index of the 96 mutation type

 For \(n_{pos} = 1 \) to \((k - 2)\), where \(n_{pos} \) is the position in sequence matchseq\(_j\)

 If matchseq\(_j[n_{pos} : n_{pos} + 2] \) == mut(\(q_{trinuc}, ref \))

 mutseq = matchseq\(_j\)

 mutseq\(_j[n_{pos} : n_{pos} + 2] \) = mut(\(q_{trinuc}, alt \))

 If mutseq not in matchseq\(_j\)

 count\(_{mut}(pwm(i), mut(q_{trinuc}), disrupt) + = count\(_{seq}(matchseq)\)

 count\(_{mut}(pwm(i), mut(q_{trinuc}), create) + = count\(_{seq}(mutseq)\)

3. **Normalize probability**

 For \(i = 1 \) to \(I \), where \(i \) is the index of transcription factor set PWM

 For \(q_{trinuc} = 1 \) to \(Q_{trinuc} \), where \(Q_{trinuc} \) is the index of the 96 mutation types

 \[
 p_{mut}(pwm(i), mut(q_{trinuc}), disrupt) = \frac{ count_{mut}(pwm(i), mut(q_{trinuc}), disrupt) }{ count_{genome}(k, mut(q_{trinuc}, ref)) } \\
 p_{mut}(pwm(i), mut(q_{trinuc}), create) = \frac{ count_{mut}(pwm(i), mut(q_{trinuc}), create) }{ count_{genome}(k, mut(q_{trinuc}, ref)) }
 \]
Bayesian Inference of Transcription Factor Signature Alteration Probability

To compute the transcription factor signature alteration probability $Pr(a|s_i, tf_k)$, we have:

$$Pr(a|s_i, tf_k) = \sum_{j=1}^{96} Pr(a, m_j|s_i, tf_k)$$ (1)

Based on the Bayesian tree described in Fig 1c, we have the joint probability of all parameters described by Eq. 2.

$$Pr(a, tf_k, m_j, s_i) = Pr(a, tf_k|m_j)Pr(m_j|s_i)Pr(s_i)$$ (2)

$$Pr(a, tf_k, m_j|s_i) = Pr(a, tf_k|m_j)Pr(m_j|s_i)$$

$$\frac{Pr(a, tf_k, m_j|s_i)}{Pr(tf_k)} = \frac{Pr(a, tf_k|m_j)}{Pr(tf_k)} \cdot Pr(m_j|s_i)$$

$$Pr(a, m_j|s_i, tf_k) = Pr(a|m_j, tf_k)Pr(m_j|s_i)$$ (3)

Combining Eq. 3 and Eq. 1, we have Eq.(5) in the main text.